Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Vol. 47, No. 1
Copyright © 1995 by The American Society for Pharmacology and Experimental Therapeutics
Diabetes Mellitus-Induced Alterations of Hepatobiliary Function Function
Function
JOHN B. WATKINS III* AND R. A. SANDERS
Indiana University School of Medicine *I***' UNCTION**
In B. WATKINS III AND R. A. SANDER*
Indiana University School of Medicine

I. Introduction
Diabetes mellitus may be defined as a commonly oc-I. Introduction
Diabetes mellitus may be defined as a commonly oc-
rring disease in which plasma glucose control is de-I. Introduction
Diabetes mellitus may be defined as a commonly oc-
curring disease in which plasma glucose control is de-
fective because of insulin deficiency or decreased target**fective because of insuling the insuline defined** as a commonly curring disease in which plasma glucose control is fective because of insulin deficiency or decreased targetal responsiveness to insulin. Diabetes is of Creament Calculation
Curring disease in which plasma glucose control is de-
fective because of insulin deficiency or decreased target-
cell responsiveness to insulin. Diabetes is often manacompanied by diverse pathological Diabetes mellitus may be defined as a commonly oc-
curring disease in which plasma glucose control is de-
fective because of insulin deficiency or decreased target-
cell responsiveness to insulin. Diabetes is often
accomp curring disease in which plasma glucose control is
fective because of insulin deficiency or decreased tar
cell responsiveness to insulin. Diabetes is c
accompanied by diverse pathological states, inclu
coronary heart disea fective because of insulin deficiency or decreased target-
cell responsiveness to insulin. Diabetes is often
accompanied by diverse pathological states, including
coronary heart disease, renal insufficiency, cerebrovas-
cu cell responsiveness to insulin. Diabetes is of accompanied by diverse pathological states, includ coronary heart disease, renal insufficiency, cerebrov cular disorders, and neuropathy. Diabetes is also knot to produce subs accompanied by diverse pathological states, including
coronary heart disease, renal insufficiency, cerebrovas-
cular disorders, and neuropathy. Diabetes is also known
to produce substantial changes in intracellular metabo-**1980**
 1990). Because of the importance of bilary excretionally fractionally interesting to produce substantial changes in intracellular metabolitary
 1990). Because of the importance of biliary excretion in

the remo cular disorders, and neuropathy. Diabetes is also known
to produce substantial changes in intracellular metabo-
lism in most tissues, including liver (Rifkin and Porte,
1990). Because of the importance of biliary excretio to produce substantial changes in intracellular metabolism in most tissues, including liver (Rifkin and Porte, $\frac{D\xi}{1990}$). Because of the importance of biliary excretion in the removal of drugs and their metabolites lism in most tissues, including liver (Rifkin and Porte, 1990). Because of the importance of biliary excretion in the removal of drugs and their metabolites from the body (Siegers and Watkins, 1991), several studies on th 1990). Because of the importance of biliary excretion ithe removal of drugs and their metabolites from the body (Siegers and Watkins, 1991), several studies on the effects of insulin deficiency on hepatic drug disposition body (Siegers and Watkins, 1991), several studies on the effects of insulin deficiency on hepatic drug disposition provide evidence that diabetes may also alter the pharmaceutical macodynamics and pharmacekinetics of phar macodynamics and pharmacokinetics of pharmaceutical
agents (Watkins and Sanders, 1991), potentially in-
* To whom correspondence should be addressed: Medical Sciences

creasing the risk of drug
decreasing drug efficacy.
Early researchers four

Easing the risk of drug toxicity and side effects or
ereasing drug efficacy.
Early researchers found an increased incidence of
llstones in diabetics at autopsy (Feldman and Feldcreasing the risk of drug toxicity and side effects decreasing drug efficacy.

Early researchers found an increased incidence at autopsy (Feldman and Feldman, 1954; Lieber, 1952), as well as an increased frequency creasing the risk of drug toxicity and side effects or
decreasing drug efficacy.
Early researchers found an increased incidence of
gallstones in diabetics at autopsy (Feldman and Feld-
man, 1954; Lieber, 1952), as well as decreasing drug efficacy.
Early researchers found an increased incidence
gallstones in diabetics at autopsy (Feldman and Fel
man, 1954; Lieber, 1952), as well as an increased fi
quency of cholelithiasis among diabetic pati Early researchers found an increased incidence of gallstones in diabetics at autopsy (Feldman and Feldman, 1954; Lieber, 1952), as well as an increased frequency of cholelithiasis among diabetic patients (Goldstein and Sch gallstones in diabetics at autopsy (Feldman and Feldman, 1954; Lieber, 1952), as well as an increased frequency of cholelithiasis among diabetic patients (Goldstein and Schein, 1963; Twiss and Carter, 1952). Diabetes-induc man, 1954; Lieber, 1952), as well as an increased frequency of cholelithiasis among diabetic patients (Goldstein and Schein, 1963; Twiss and Carter, 1952).
Diabetes-induced changes have been observed in biotransformation, quency of cholelithiasis among diabetic patients (Goldstein and Schein, 1963; Twiss and Carter, 1952).
Diabetes-induced changes have been observed in bio-
transformation, both in humans (Daintith et al., 1976;
Dajani et al stein and Schein, 1963; Twiss and Carter, 1952).
Diabetes-induced changes have been observed in bio-
transformation, both in humans (Daintith et al., 1976;
Dajani et al., 1974; Oltmanns et al., 1984; Salmela et al.,
1980) Diabetes-induced changes have been observed in bio-
transformation, both in humans (Daintith et al., 1976;
Dajani et al., 1974; Oltmanns et al., 1984; Salmela et al.,
1980) and in laboratory animal models (Ackerman and
Lei transformation, both in humans (Daintith et al., 1976;
Dajani et al., 1974; Oltmanns et al., 1984; Salmela et al.,
1980) and in laboratory animal models (Ackerman and
Leibman, 1977; Emudianughe et al., 1988; Faas and
Carte Dajani et al., 1974; Oltmanns et al., 1984; Salmela et al., 1980) and in laboratory animal models (Ackerman and Leibman, 1977; Emudianughe et al., 1988; Faas and Carter, 1980; Grant and Duthie, 1987; Past and Cook, 1982; R 1980) and in laboratory animal models (Ackerman and Leibman, 1977; Emudianughe et al., 1988; Faas and Carter, 1980; Grant and Duthie, 1987; Past and Cook, 1982; Rouer et al., 1982; Watkins et al., 1988). Also, alterations Leibman, 1977; Emudianughe et al., 1988; Faas and Carter, 1980; Grant and Duthie, 1987; Past and Cook, 1982; Rouer et al., 1982; Watkins et al., 1988). Also, alterations in pharmacokinetic parameters have been noted for va Carter, 1980; Grant and Duthie, 1987; Past and Cook, 1982; Rouer et al., 1982; Watkins et al., 1988). Also, alterations in pharmacokinetic parameters have been noted for various drugs and xenobiotics (Carnovale et al., 198 1982; Rouer et al., 1982; Watkins et al., 1988). Also, alterations in pharmacokinetic parameters have been noted for various drugs and xenobiotics (Carnovale et al., 1986; Dajani et al., 1974; Uchida et al., 1979; Watkins alterations in pharmacokinetic parameters have
noted for various drugs and xenobiotics (Carnov
al., 1986; Dajani et al., 1974; Uchida et al.,
Watkins and Dykstra, 1987; Watkins and Noda,
Watkins and Sherman, 1992; Wey et a ted for various drugs and xenobiotics (Carnovale et

., 1986; Dajani et al., 1974; Uchida et al., 1979;

atkins and Dykstra, 1987; Watkins and Noda, 1986;

atkins and Sherman, 1992; Wey et al., 1984).

This paper will pres

Watkins and Dykstra, 1987; Watkins and Noda, 1986;

*To whom correspondence should be addressed: Medical Sciences

Program, Indiana University School of Medicine, Bloomington, IN

+ To whom correspondence should be address al., 1986; Dajani et al., 1974; Uchida et al., 1979;
Watkins and Dykstra, 1987; Watkins and Noda, 1986;
Watkins and Sherman, 1992; Wey et al., 1984).
This paper will present a simplified overview of bile
formation, hepatic Watkins and Dykstra, 1987; Watkins and Noda, 1986;
Watkins and Sherman, 1992; Wey et al., 1984).
This paper will present a simplified overview of bile
formation, hepatic uptake, and biliary excretion in order
to facilitate Watkins and Sherman, 1992; Wey et al., 1984).
This paper will present a simplified overview of bile
formation, hepatic uptake, and biliary excretion in order
to facilitate understanding diabetes-related effects on
these fu This paper will present a simplified overview of bile
formation, hepatic uptake, and biliary excretion in order
to facilitate understanding diabetes-related effects on
these functions. Extensive discussions of the general

⁴⁷⁴⁰⁵ ^{*} To whom correspondence should be addressed: Medical Scienc
ogram, Indiana University School of Medicine, Bloomington,
405
† Abbreviations: ATP, adenosine triphosphate; ATPase, aden
e triphosphatase; v_{max}, maximal vel * To whom correspondence should be addressed: Medical Science Program, Indiana University School of Medicine, Bloomington, I
47405
† Abbreviations: ATP, adenosine triphosphate; ATPase, aden
sine triphosphatase; v_{max} , ma

phate.

aspet

et al., 1988; Boyer et al., 1992; Coleman and Rahman,
1992; Klaassen and Watkins, 1984; Meijer and Van der ² WATKINS AND S4

1992; Klaassen and Watkins, 1984; Meijer and Van der

1992; Klaassen and Watkins, 1984; Meijer and Van der

1989; Petzinger et al., 1989a; Siegers and Tre

Watkins, 1991). A more exhaustive review of th et al., 1988; Boyer et al., 1992; Coleman and Rahma
1992; Klaassen and Watkins, 1984; Meijer and Van de
Sluijs, 1989; Petzinger et al., 1989a; Siegers an
Watkins, 1991). A more exhaustive review of the avail
able data rega et al., 1988; Boyer et al., 1992; Coleman and Rahman, most 1992; Klaassen and Watkins, 1984; Meijer and Van der chon Sluijs, 1989; Petzinger et al., 1989a; Siegers and Treations, 1991). A more exhaustive review of the avai 1992; Klaassen and Watkins, 1984; Meijer and Van der clups, 1989; Petzinger et al., 1989a; Siegers and T
Watkins, 1991). A more exhaustive review of the available data regarding diabetes-induced alterations in whepatobilia Watkins, 1991). A more exhaustive review of the available data regarding diabetes-induced alterations in hepatobiliary function as well as suggestions for future research will also be presented here.

II. Streptozotocin- and **Afloxan-induced Diabetes**

Insulin-dependent diabetes mellitus is characterized **II. Streptozotocin- and Alloxan-induced Diabetes**
Insulin-dependent diabetes mellitus is characterized
by low or absent levels of circulating endogenous insulin,
and injection of insulin helps control hyperglycemia and **II. Streptozotocin- and Alloxan-induced Diabetes** ficing the ficing insulin-dependent diabetes mellitus is characterized anisoly low or absent levels of circulating endogenous insulin, strand injection of insulin helps co I. Streptozotocin- and Alloxan-Induced Diabeter
Insulin-dependent diabetes mellitus is characterize
by low or absent levels of circulating endogenous insulir
and injection of insulin helps control hyperglycemia an
ketosis Insulin-dependent diabetes mellitus is characterized
by low or absent levels of circulating endogenous insulin
and injection of insulin helps control hyperglycemia and
ketosis as well as sustain life itself. Although the e by low or absent levels of circulating endogenous insulin, strand injection of insulin helps control hyperglycemia and now
ketosis as well as sustain life itself. Although the etiol-
ogy is unknown, human leukocyte antigen and injection of insulin helps control hyperglycemia and
ketosis as well as sustain life itself. Although the etiol-
ogy is unknown, human leukocyte antigen association
viral factors, and various environmental factors may
 ketosis as well as sustain life itself. Although the etiogy is unknown, human leukocyte antigen association wiral factors, and various environmental factors montribute. There is chronic autoimmunity against pareatic islet ogy is unknown, human leukocyte antigen association,
viral factors, and various environmental factors may
contribute. There is chronic autoimmunity against pan-
creatic islet cells, and islet cell antibodies may be detectviral factors, and various environmental factors may et a contribute. There is chronic autoimmunity against pan-
creatic islet cells, and islet cell antibodies may be detect-
able years before clinical onset of the diseas contribute. There is chronic autoimmunity against pancreatic islet cells, and islet cell antibodies may be detectable years before clinical onset of the disease. Normally, insulin functions in opposition to glucagon, as th creatic islet cells, and islet cell antibodies may be detect-
able years before clinical onset of the disease. Normally,
insulin functions in opposition to glucagon, as the two
hormones function in concert to maintain norm able years before clinical onset of the disease. Normally, often insulin functions in opposition to glucagon, as the two sugn hormones function in concert to maintain normal glu-
cose metabolism. In the absence of insulin, insulin functions in opposition to glucagon, as the two hormones function in concert to maintain normal glucose metabolism. In the absence of insulin, there is express glucagon and a hormonal milieu that favors a increase hormones function in concert to maintain normal glu-
cose metabolism. In the absence of insulin, there is ex-
cess glucagon and a hormonal milieu that favors an
increase in hepatic gluconeogenesis and glycogenolysis,
a dec cose metabolism. In the absence of insulin, there is
cess glucagon and a hormonal milieu that favors
increase in hepatic gluconeogenesis and glycogenoly
a decrease in peripheral glucose uptake, and a decrea
conversion of g cess glucagon and a hormonal milieu that favors a
increase in hepatic gluconeogenesis and glycogenolysi
a decrease in peripheral glucose uptake, and a decrease
conversion of glucose into glycogen. Another pathogm
monic fea increase in hepatic gluconeogenesis and glycogenolysis,
a decrease in peripheral glucose uptake, and a decreased
conversion of glucose into glycogen. Another pathogno-
monic feature is thickening of capillary basement mema decrease in peripheral glucose uptake, and a decreased
conversion of glucose into glycogen. Another pathognomomic feature is thickening of capillary basement mem-
from branes. Moreover, conversion of excess glucose into monic feature is thickening of capillary basement membranes. Moreover, conversion of excess glucose into sorbitol may be involved in diabetic neuropathy and retinopathy (Rifkin and Porte, 1990).
Two experimental models hav onic feature is thickening of capillary basement mem-
anes. Moreover, conversion of excess glucose into sor-
tol may be involved in diabetic neuropathy and
tinopathy (Rifkin and Porte, 1990).
Two experimental models have b

branes. Moreover, conversion of excess glucose into s
bitol may be involved in diabetic neuropathy a
retinopathy (Rifkin and Porte, 1990).
Two experimental models have been extensively us
to determine how insulin deficienc retinopathy (Rifkin and Porte, 1990).
Two experimental models have been extensively used
to determine how insulin deficiency may affect hepato-
biliary function. Although early workers thought that
administration of alloxa retinopathy (Rifkin and Porte, 1990).
Two experimental models have been extensively used
to determine how insulin deficiency may affect hepato-
biliary function. Although early workers thought that
administration of alloxa Two experimental models have been extensively used
to determine how insulin deficiency may affect hepato-
biliary function. Although early workers thought that
administration of alloxan or streptozotocin induced sim-
ilar to determine how insulin deficiency may affect hepato-
biliary function. Although early workers thought that
administration of alloxan or streptozotocin induced sim-
ilar types of insulin-deficiency diabetes, there are maj biliary function. Although early workers thought that administration of alloxan or streptozotocin induced similar types of insulin-deficiency diabetes, there are major differences in their diabetogenic effects (Rerup, 1980 administration of alloxan or streptozotocin induced similar types of insulin-deficiency diabetes, there are major differences in their diabetogenic effects (Rerup, 1980; Shafrir, 1990). It has been known for some time that ilar types of insulin-deficiency diabetes, there are major low
differences in their diabetogenic effects (Rerup, 1980; He
Shafrir, 1990). It has been known for some time that cho
structural alterations in the beta cells of differences in their diabetogenic effects (Rerup, 1980;
Shafrir, 1990). It has been known for some time that
structural alterations in the beta cells of the pancreas
occur within 48 h of administration of streptozotocin a structural alterations in the beta cells of the pancreas bile acids and through cholesterol secretion into the bile;
occur within 48 h of administration of streptozotocin and cholesterol is either reabsorbed from the intes structural alterations in the beta cells of the pancreas
occur within 48 h of administration of streptozotocin and
last for up to 4 months, progressing finally to total
degranulation of beta cells (Arison et al., 1967). Al occur within 48 h of administration of streptozotocin and clast for up to 4 months, progressing finally to total degranulation of beta cells (Arison et al., 1967). Alloxan causes a decrease in hepatic glycogen within 24 to last for up to 4 months, progressing finally to total degranulation of beta cells (Arison et al., 1967). Alloxan causes a decrease in hepatic glycogen within 24 to 72 h, an effect that is partially reversible by insulin (D degranulation of beta cells (Arison et al., 1967). Alloxan causes a decrease in hepatic glycogen within 24 to 72 h
an effect that is partially reversible by insulin (Dixon e
al., 1961). Streptozotocin is more specific than causes a decrease in hepatic glycogen within 24 to 72 h, the an effect that is partially reversible by insulin (Dixon et 1
al., 1961). Streptozotocin is more specific than alloxan,
less likely to cause ketosis, and less pr an effect that is partially reversible by insulin (Dixon et 1983)
al., 1961). Streptozotocin is more specific than alloxan, D
less likely to cause ketosis, and less prone to interanimal 1999
variability in terms of effecti al., 1961). Streptozotocin is more specific than alloxan,
less likely to cause ketosis, and less prone to interanimal
variability in terms of effective dose. Alloxan generally
produces greater cytotoxicity owing to its con less likely to cause ketosis, and less prone to interanimal
variability in terms of effective dose. Alloxan generally
produces greater cytotoxicity owing to its conversion to
anionic radicals (Nukatsuka et al., 1989). Panc variability in terms of effective dose. Alloxan general produces greater cytotoxicity owing to its conversion
anionic radicals (Nukatsuka et al., 1989). Pancrealiste cells treated with alloxan exhibit multiple cellu
necros produces greater cytotoxicity owing to its conversion to 19
anionic radicals (Nukatsuka et al., 1989). Pancreatic de
islet cells treated with alloxan exhibit multiple cellular al
necrosis, marked degranulation, and extensi anionic radicals (Nukatsuka et al., 1989). Pancreatic dislet cells treated with alloxan exhibit multiple cellular and extensive vesiculation of the endoplasmic reticulum and Golgi complex, as likell as enlarged mitochondri islet cells treated with alloxan exhibit multiple cellular
necrosis, marked degranulation, and extensive vesicula-
tion of the endoplasmic reticulum and Golgi complex, as
well as enlarged mitochondria with disrupted crista necrosis, marked degranulation, and extensive vesiculation of the endoplasmic reticulum and Golgi complex, as
well as enlarged mitochondria with disrupted cristae
and mitochondrial ruptures (Abdel-Rahman et al.,
1992). Win tion of the endoplasmic reticulum and Golgi complex, as lipowell as enlarged mitochondria with disrupted cristae zate and mitochondrial ruptures (Abdel-Rahman et al., and 1992). Winkler and Moser (1992) suggest that disrup well as enlarged mitochondria with disrupted crist
and mitochondrial ruptures (Abdel-Rahman et a
1992). Winkler and Moser (1992) suggest that disruption
of the antioxidant tissue defense enzymes is central
the diabetogenic and mitochondrial ruptures (Abdel-Rahman et al., and A-1992). Winkler and Moser (1992) suggest that disruption erbated of the antioxidant tissue defense enzymes is central to ever, a the diabetogenic effect of streptozotoc

) SANDERS
most of the cytotoxic effects of alloxan, although mito-
chondria are still enlarged (Abdel-Rahman et al., 1992 Chondria are still enlarged (Abdel-Rahman et al., 1992).
Chondria are still enlarged (Abdel-Rahman et al., 1992).
Treatment of diabetic rats with vitamin E or probucol SANDERS

most of the cytotoxic effects of alloxan, although mito-

chondria are still enlarged (Abdel-Rahman et al., 1992).

Treatment of diabetic rats with vitamin E or probucol

alleviates the oxidation of lipoproteins a most of the cytotoxic effects of alloxan, although mito-
chondria are still enlarged (Abdel-Rahman et al., 1992).
Treatment of diabetic rats with vitamin E or probucol
alleviates the oxidation of lipoproteins and cytotoxic most of the cytotoxic effects of alloxan, although mito-
chondria are still enlarged (Abdel-Rahman et al., 1992).
Treatment of diabetic rats with vitamin E or probucol
alleviates the oxidation of lipoproteins and cytotoxic 1989). Freatment of diabetic rats with vitamin E or probucol
leviates the oxidation of lipoproteins and cytotoxicity
thout altering hyperglycemia (Morel and Chisolm,
89).
Interpretation of studies in chemically induced dia-
tic a

alleviates the oxidation of lipoproteins and cytotoxic
without altering hyperglycemia (Morel and Chisol
1989).
Interpretation of studies in chemically induced d
betic animals must consider the toxicity of the diabe
genic a without altering hyperglycemia (Morel and Chisolm, 1989).

Interpretation of studies in chemically induced dia-

betic animals must consider the toxicity of the diabeto-

genic agents when determining the effect of insulin 1989).
Interpretation of studies in chemically induced diabetic animals must consider the toxicity of the diabeto-
genic agents when determining the effect of insulin de-
ficiency. Many studies of diabetic effects have use Interpretation of studies in chemically induced diabetic animals must consider the toxicity of the diabeto-
genic agents when determining the effect of insulin de-
ficiency. Many studies of diabetic effects have used
anima betic animals must consider the toxicity of the diabett genic agents when determining the effect of insulin deficiency. Many studies of diabetic effects have use animals from 1 day to 3 months after treatment wit streptozo genic agents when determining the effect of insulin deficiency. Many studies of diabetic effects have used
animals from 1 day to 3 months after treatment with
streptozotocin or alloxan. Effects on both bile flow (Car-
nova animals from 1 day to 3 months after treatment with
streptozotocin or alloxan. Effects on both bile flow (Car-
novale and Rodriguez-Garay, 1984; Carnovale et al.,
1987, 1991; Chawalit et al., 1982) and biliary excretion
(C animals from 1 day to 3 months after treatment with
streptozotocin or alloxan. Effects on both bile flow (Car-
novale and Rodriguez-Garay, 1984; Carnovale et al.,
1987, 1991; Chawalit et al., 1982) and biliary excretion
(C streptozotocin or alloxan. Effects on both bile flow (Carnovale and Rodriguez-Garay, 1984; Carnovale et al., 1987, 1991; Chawalit et al., 1982) and biliary excretion (Carnovale et al., 1986, 1987; Marin et al., 1988; Siege novale and Rodriguez-Garay, 1984; Carnovale et al., 1987, 1991; Chawalit et al., 1982) and biliary excretion (Carnovale et al., 1986, 1987; Marin et al., 1988; Siegers et al., 1985), as well as on hepatic biotransformation 1987, 1991; Chawalit et al., 1982) and biliary excretion
(Carnovale et al., 1986, 1987; Marin et al., 1988; Siegers
et al., 1985), as well as on hepatic biotransformation
(Badawy and Evans, 1977; Carnovale et al., 1992;
Uc (Carnovale et al., 1986, 1987; Marin et al., 1988; Sieger
et al., 1985), as well as on hepatic biotransformatio
(Badawy and Evans, 1977; Carnovale et al., 1992
Uchida et al., 1979) at 1 to 2 weeks after treatment ar
often (Badawy and Evans, 1977; Carnovale et al., 1992; Uchida et al., 1979) at 1 to 2 weeks after treatment are often not completely reversible by insulin treatment, suggesting that the damage may be owing to toxicity of the di (Badawy and Evans, 1977; Carnovale et al., 1992; Uchida et al., 1979) at 1 to 2 weeks after treatment are often not completely reversible by insulin treatment, suggesting that the damage may be owing to toxicity of the dia Uchida et al., 1979) at 1 to 2 weeks after treatment are
often not completely reversible by insulin treatment,
suggesting that the damage may be owing to toxicity of
the diabetogen rather than diabetes itself. However,
man often not completely reversible by insulin treatment
suggesting that the damage may be owing to toxicity of
the diabetogen rather than diabetes itself. However
many signs of diabetogen toxicity disappear after 1
days, and suggesting that the damage may be owing to toxicity of
the diabetogen rather than diabetes itself. However,
many signs of diabetogen toxicity disappear after 14
days, and changes in experimental parameters are prob-
ably o the diabetogen rather than diabetes itself. However,
many signs of diabetogen toxicity disappear after 14
days, and changes in experimental parameters are prob-
ably owing to insulin deficiency itself as addition of
exogen many signs of diabetogen toxicity disappear after 14
days, and changes in experimental parameters are prob-
ably owing to insulin deficiency itself as addition of
exogenous insulin reverses these effects. Future work
must days, and changes in experiment
ably owing to insulin deficienc
exogenous insulin reverses thes
must unequivocally rule out chre
from the diabetogens themselves must unequivocally rule out chronic or delayed toxicity
from the diabetogens themselves.
III. Diabetes and Cholesterol Metabolism

Cholesterol, a precursor for plasma membranes, bile III. Diabetes and Cholesterol Metabolism
Cholesterol, a precursor for plasma membranes, bile
salts, steroid hormones, and other molecules, circulates
in the plasma as part of various lipoprotein complexes, III. Diabetes and Cholesterol Metabolism
Cholesterol, a precursor for plasma membranes, bile
salts, steroid hormones, and other molecules, circulates
in the plasma as part of various lipoprotein complexes,
including chylom III. Diabetes and Cholesterol Metabolism
Cholesterol, a precursor for plasma membranes, bil
salts, steroid hormones, and other molecules, circulate
in the plasma as part of various lipoprotein complexes
including chylomicr Low density a precursor for plasma membranes, olle

salts, steroid hormones, and other molecules, circulates

in the plasma as part of various lipoprotein complexes,

including chylomicrons, very low density lipoproteins,
 in the plasma as part of various lipoprotein complexes,
including chylomicrons, very low density lipoproteins,
low density lipoproteins, and high density lipoproteins.
Hepatocytes are involved in synthesis and elimination including chylomicrons, very low density lipoproteins,
low density lipoproteins, and high density lipoproteins.
Hepatocytes are involved in synthesis and elimination of
cholesterol, both through cholesterol degradation int low density lipoproteins, and high density lipoproteins.
Hepatocytes are involved in synthesis and elimination of
cholesterol, both through cholesterol degradation into
bile acids and through cholesterol secretion into the **repaticyles are involved in synthesis and elimination of**
cholesterol, both through cholesterol degradation into
bile acids and through cholesterol secretion into the bile;
cholesterol is either reabsorbed from the intest bile acids and through cholesterol secretion into the bile; cholesterol is either reabsorbed from the intestines or 1988). creted in the feces. Hepatic synthesis of cholesterol is
ntrolled homeostatically by the level of dietary choles-
rol (Coleman and Rahman, 1992; Turley and Dietschy,
88).
Diabetics are prone to lipid disorders (Winocour et controlled homeostatically by the level of dietary cholesterol (Coleman and Rahman, 1992; Turley and Dietschy, 1988).

1988).

Diabetics are prone to lipid disorders (Winocour et al., 1992; Cairns and Peters, 1983; Gibbons

Diabetics are prone to lipid disorders (Winocour et al., 1992; Cairns and Peters, 1983; Gibbons, 1986), with atheroma accounting for 60 to 75% of deaths (Verges, 1991). Characteristic abnormalities in diabetics include 1992; Cairns and Peters, 1983; Gibbons, 1986), with

1992; Cairns and Peters, 1983; Gibbons, 1986), with

atheroma accounting for 60 to 75% of deaths (Verges,

1991). Characteristic abnormalities in diabetics include

decr 1992; Cairns and Peters, 1983; Gibbons, 1986), with
atheroma accounting for 60 to 75% of deaths (Verges,
1991). Characteristic abnormalities in diabetics include
decreased levels of high density lipoprotein cholesterol,
al atheroma accounting for 60 to 75% of deaths (Verges, 1991). Characteristic abnormalities in diabetics include decreased levels of high density lipoprotein cholesterol, along with increased mean plasma concentrations of cho 1991). Characteristic abnormalities in diabetics includ decreased levels of high density lipoprotein cholestero along with increased mean plasma concentrations (cholesterol, very low density lipoprotein, low densiti lipopr decreased levels of high density lipoprotein cholesterol,
along with increased mean plasma concentrations of
cholesterol, very low density lipoprotein, low density
lipoprotein, triglycerides (Barrett-Connor, 1992; Man-
zat along with increased mean plasma concentrations cholesterol, very low density lipoprotein, low densit
lipoprotein, triglycerides (Barrett-Connor, 1992; Man
zato et al., 1993; Verges, 1991), and apolipoprotein A-
and A-II (cholesterol, very low density lipoprotein, low density
lipoprotein, triglycerides (Barrett-Connor, 1992; Man-
zato et al., 1993; Verges, 1991), and apolipoprotein A-I
and A-II (Taskinen et al., 1992). These effects are exa lipoprotein, triglycerides (Barrett-Connor, 1992; Man-
zato et al., 1993; Verges, 1991), and apolipoprotein A-I
and A-II (Taskinen et al., 1992). These effects are exac-
erbated by obesity (Laakso and Pyorala, 1990). How-
 zato et al., 1993; Verges, 1991), and apolipoprotein A-I
and A-II (Taskinen et al., 1992). These effects are exac-
erbated by obesity (Laakso and Pyorala, 1990). How-
ever, a twin study (Dubrey et al., 1993) suggested that and A-II (Taskinen et al., 1992). These effects are exacerbated by obesity (Laakso and Pyorala, 1990). However, a twin study (Dubrey et al., 1993) suggested that there is no relationship between genetic susceptibility to i

DIABETES MELLITUS AND HEPATOBILLARY FUNCTION ³

DIABETES MELLITUS AND HEP.

lipids and lipoproteins, and two studies have shown St

little correlation between lipoprotein (a) levels and dia-DIABETES MELLITUS AND
lipids and lipoproteins, and two studies have shown
little correlation between lipoprotein (a) levels and dia-
betic complications (Ritter et al., 1993; Winocour et al., DIABETES MELLITUS AND H
lipids and lipoproteins, and two studies have shown
little correlation between lipoprotein (a) levels and dia-
betic complications (Ritter et al., 1993; Winocour et al.,
1989). Nevertheless, there i lipids and lipoproteins, and two studies have shown Si
little correlation between lipoprotein (a) levels and dia-
betic complications (Ritter et al., 1993; Winocour et al., en
1989). Nevertheless, there is some evidence th lipids and lipoproteins, and two studies have shown St
little correlation between lipoprotein (a) levels and dia-
betic complications (Ritter et al., 1993; Winocour et al., er-
1989). Nevertheless, there is some evidence t little correlation between lipoprotein (a) levels and diabetic complications (Ritter et al., 1993; Winocour et al., 1989). Nevertheless, there is some evidence that activity of lipoprotein lipase is genetically determined betic complications (Ritter et al., 1993; Winocour et al., 1989). Nevertheless, there is some evidence that activity of lipoprotein lipase is genetically determined and is correlated with plasma triglyceride levels in diab 1989). Nevertheless, there is some evidence that activity vior
of lipoprotein lipase is genetically determined and is
correlated with plasma triglyceride levels in diabetics
(Ahn et al., 1993; Wilson et al., 1993). The li correlated with plasma triglyceride levels in diabetics

(Ahn et al., 1993; Wilson et al., 1993). The lipid content

of cell membranes seems to be disrupted by diabetes, as

evidenced by increased nonenzymatic glycation, of cell membranes seems to be disrupted by diabetes, as
evidenced by increased nonenzymatic glycation, lipid
peroxidation, and cholesterol/phospholipid ratio (Watala
and Winocour, 1992).
Similar lipid anomalies occur in an

peroxidation, and cholesterol/phospholipid ratio (Watala port and Winocour, 1992).

198

Similar lipid anomalies occur in animal models as 199

well. Tepperman et al. (1983) have shown a reduction in bloo

the activity of and Winocour, 1992).

Similar lipid anomalies occur in animal movell. Tepperman et al. (1983) have shown a reduce

the activity of glycosyltransferases that are invo

membrane glycoprotein synthesis in streptozotoc

betic Similar lipid anomalies occur in animal models as 199
well. Tepperman et al. (1983) have shown a reduction in blow
the activity of glycosyltransferases that are involved in In
membrane glycoprotein synthesis in streptozoto well. Tepperman et al. (1983) have shown a reduction in block the activity of glycosyltransferases that are involved in In s membrane glycoprotein synthesis in streptozotocin-dia-
betic rats. Nonenzymatic glycosylation of the activity of glycosyltransferases that are involved in I
membrane glycoprotein synthesis in streptozotocin-dia-
betic rats. Nonenzymatic glycosylation of proteins is also
increased during diabetes in rats (Zimmerman, 19 membrane glycoprotein synthesis in streptozotocir
betic rats. Nonenzymatic glycosylation of proteins is
increased during diabetes in rats (Zimmerman, 198
diabetic rabbits, blood glucose is correlated posit
with beta-lipopr betic rats. Nonenzymatic glycosylation of proteins is also
increased during diabetes in rats (Zimmerman, 1989). In
diabetic rabbits, blood glucose is correlated positively
with beta-lipoprotein and negatively with alpha-li increased during diabetes in rats (Zimmerman, 1989). In diabetic rabbits, blood glucose is correlated positively with beta-lipoprotein and negatively with alpha-lipoprotein (Li et al., 1989), whereas hepatic lipoprotein fr mabetic raboits, blood glucose is correlated positively
with beta-lipoprotein and negatively with alpha-lipopro-
tein (Li et al., 1989), whereas hepatic lipoprotein frac-
tions are enriched with triacylglycerol (O'Meara et with beta-lipoprotein and negatively with alp
tein (Li et al., 1989), whereas hepatic lipopr
tions are enriched with triacylglycerol (O'M-
1991) and deficient in the major enzymes
cholesterol metabolism, hydroxymethylglu
 zyme A reductase, cholesterol (O'Meara et al.
291) and deficient in the major enzymes regulating cholesterol metabolism, hydroxymethylglutaryl-coen zyme A reductase, cholesterol 7α-hydroxylase, and cho-
lesterol acylt 1991) and deficient in the major enzymes regulating gan cholesterol metabolism, hydroxymethylglutaryl-coen-
zyme A reductase, cholesterol 7α -hydroxylase, and cho-
lesterol acyltransferase (O'Meara et al., 1990). Mem-
b cholesterol metabolism, hydroxymethylglutaryl-co
zyme A reductase, cholesterol 7 α -hydroxylase, and c
lesterol acyltransferase (O'Meara et al., 1990). Me
brane fatty acid composition and fluidity are altered
diabetic ra zyme A reductase, choiesteror *ra*-hydroxylase, and cho-
lesterol acyltransferase (O'Meara et al., 1990). Mem-
brane fatty acid composition and fluidity are altered in
diabetic rats in liver (Venkatraman et al., 1991; Kord **in platelets** acylizanserase (O meara et al., 1990). Membrane fatty acid composition and fluidity are altered in diabetic rats in liver (Venkatraman et al., 1991; Kordowiak et al., 1990; Mimouni and Poisson, 1991), as wel orane ratty actd composite

diabetic rats in liver (Venliak et al., 1990; Mimouni

in platelets, aorta, and

1992; Dang et al., 1988).

Hepatic synthesis of c diabetic rats in iver (veinsatraman et al., 1991; Kordowisk et al., 1990; Mimouni and Poisson, 1991), as well as m
in platelets, aorta, and adipose cells (Egutkin et al., tl
1992; Dang et al., 1988).
Hepatic synthesis of c

in platelets, aorta, and adipose cells (Egutkin et al., the 1992; Dang et al., 1988). Ind Hepatic synthesis of cholesterol is increased more gal than two-fold in diabetic rats fed a high protein diet car (Kudchodkar et al. 1992; Dang et al., 1988). indicant reduction is increased more gal than two-fold in diabetic rats fed a high protein diet carr (Kudchodkar et al., 1988). However, insulin induces a systempid and significant reduction in bi repatic synthesis of cholesterol is increased more
than two-fold in diabetic rats fed a high protein diet
(Kudchodkar et al., 1988). However, insulin induces a
rapid and significant reduction in biliary lipid output in
dia (Kudchodkar et al., 1988). However, insulin induces a systems. Uptake of organic anions proceeds sodium inderapid and significant reduction in biliary lipid output in pendently (Potter et al., 1987) and is accelerated in t diabetic rats (Villanueva et al., 1990b), suggesting that insulin or its absence may play a role in mechanisms Several distinct, class-specific binding proteins in the
other than synthesis involved in the supply of biliary sinusoidal membrane of the hepatocyte probably repre-
lip msum or its absence may piay a rote in mechanisms
other than synthesis involved in the supply of biliary
lipids toward the canaliculi. Insulin deficiency decreases
the removal rates of triacylglycerols from the circula-
ti the removal rates of triacylglycerols from the liver as
well as the rate of their disappearance from the circula-
tion (Hirano et al., 1991; Moir and Zammit, 1992;
Redgrave and Callow, 1990; Roland and Maranhao,
1993; Yosh well as the rate of their disappearance from the circulawen as the rate of their disappearance from the circulation (Hirano et al., 1991; Moir and Zammit, 1992; Redgrave and Callow, 1990; Roland and Maranhao, 1993; Yoshino et al., 1990, 1992). In fact, chronic probucol therapy col therapy seems to normalize very low density lipoprotein composition, contributing to the accelerated removal of triglycerides from blood of streptozotocincol therapy seems to normalize very low density lipopro-
tein composition, contributing to the accelerated re-
in moval of triglycerides from blood of streptozotocin-
diabetic rats (Yoshino et al., 1991). Levels of trapoli **in alloxan diabetic rabbits, suggesting that insulin defi-**
 in alloxan diabetic rabbits, suggesting that insulin defi-
 in alloxan diabetic rabbits, suggesting that insulin defi-
 in alloxan diabetic rabbits, sugges diabetic rats (Yoshino et al., 1991). Levels
apolipoprotein E messenger ribonucleic acid are red
in alloxan diabetic rabbits, suggesting that insulin o
ciency influences apolipoprotein E gene expression, t
decreasing hepat aponpoprotein E messenger rhonticleic actuater et al., in alloxan diabetic rabbits, suggesting that insulin defi-
ciency influences apolipoprotein E gene expression, thus
discussion that diabetes mellitus affects cholester ciency influences apolipoprotein E gene expression, thus
decreasing hepatic and adrenal cholesterol concentra-
tions (Lenich et al., 1991). It is clear from this limited hil
discussion that diabetes mellitus affects choles decreasing hepatic and adrenal cholesterol concentra-
tions (Lenich et al., 1991). It is clear from this limited
discussion that diabetes mellitus affects cholesterol pro-
duction and secretion by the liver for utilization tions (Lenich et al., 1991). It is clear from this limited discussion that diabetes mellitus affects cholesterol production and secretion by the liver for utilization by the body. Evaluations of additional details regardin tes, cholesterol homeostasis, and atherosclerosis appear elsewhere (Schwartz et al., 1992; Staprans et al., 1992;

DIABETES MELLITUS AND HEPATOBILIARY FUNCTION

vo studies have shown Stern et al., 1992). The functional consequences of strep-

otein (a) levels and dia-

tozotocin-induced diabetes mellitus, with particular ref-EPATOBILIARY FUNCTION

Stern et al., 1992). The functional consequences of strep-

tozotocin-induced diabetes mellitus, with particular ref-

erence to the cardiovascular system, were recently re-EPATOBILIARY FUNCTION 3

Stern et al., 1992). The functional consequences of strep-

tozotocin-induced diabetes mellitus, with particular ref-

erence to the cardiovascular system, were recently re-

viewed (Tomlinson et a Stern et al., 1992). The functional
tozotocin-induced diabetes mellitu
erence to the cardiovascular syst
viewed (Tomlinson et al., 1992). viewed (Tomlinson et al., 1992).
IV. Diabetes and Hepatic Uptake *A. General Considerations Regarding Hepatic Uptake*
A. General Considerations Regarding Hepatic Uptake
Bile acids, organic anions, and fatty acids are trans-

idenced by increased nonenzymatic glycation, lipid

Sile acids, organic anions, and fatty acids are trans-

Froxidation, and cholesterol/phospholipid ratio (Watala ported in blood largely bound to albumin (Berk et al.,

19 the activity of glycosyltransferases that are involved in In spite of the very tight binding of most organic anions IV. Diabetes and Hepatic Uptake
General Considerations Regarding Hepatic Uptake
Bile acids, organic anions, and fatty acids are trans-
rted in blood largely bound to albumin (Berk et a ported in blood largely bound to albumin (Berk et al., A. General Considerations Regarding Hepatic Uptake
Bile acids, organic anions, and fatty acids are trans-
ported in blood largely bound to albumin (Berk et al.,
1987; Meijer and van der Sluijs, 1989; Sorrentino et al.,
199 A. General Considerations Regaraing Hepatic Uptake

Bile acids, organic anions, and fatty acids are trans-

ported in blood largely bound to albumin (Berk et al.,

1987; Meijer and van der Sluijs, 1989; Sorrentino et al.,
 Bile acids, organic anions, and fatty acids are transported in blood largely bound to albumin (Berk et al., 1987; Meijer and van der Sluijs, 1989; Sorrentino et al., 1990), and hepatic extraction of bile acids from portal ported in blood largely bound to albumin (Berk et al., 1987; Meijer and van der Sluijs, 1989; Sorrentino et al., 1990), and hepatic extraction of bile acids from portal blood plasma is extremely efficient (Aldini et al., 1 1987; Meijer and van der Sluijs, 1989; Sorrentino et al., 1990), and hepatic extraction of bile acids from portal
blood plasma is extremely efficient (Aldini et al., 1982).
In spite of the very tight binding of most organi 1990), and hepatic extraction of bile acids from portal
blood plasma is extremely efficient (Aldini et al., 1982).
In spite of the very tight binding of most organic anions
to albumin, uptake is preceded by dissociation of blood plasma is extremely efficient (Aldini et al., 1983).
In spite of the very tight binding of most organic anio
to albumin, uptake is preceded by dissociation of the
ligand-albumin complex, because hepatic extraction
al In spite of the very tight binding of most organic anion
to albumin, uptake is preceded by dissociation of th
ligand-albumin complex, because hepatic extraction o
albumin is negligible (Berk et al., 1987). In vivo obser
va to albumin, uptake is preceded by dissociation of the ligand-albumin complex, because hepatic extraction of albumin is negligible (Berk et al., 1987). In vivo observations (Bloomer et al., 1973) led to the concept of "surf ligand-albumin complex, because hepatic extraction of
albumin is negligible (Berk et al., 1987). In vivo obser-
vations (Bloomer et al., 1973) led to the concept of "sur-
face-mediated dissociation" and the existence of a albumin is negligible (Berk et al., 1987). In vivo of vations (Bloomer et al., 1973) led to the concept of 'face-mediated dissociation" and the existence of a cific albumin-receptor on the sinusoidal plamembrane, which fac vations (Bloomer et al., 1973) led to the concept of "surface-mediated dissociation" and the existence of a specific albumin receptor on the sinusoidal plasma
membrane, which facilitates dissociation of albumin-or-
ganic a face-mediated dissociation" and the existence of a specific albumin receptor on the sinusoidal plasma
membrane, which facilitates dissociation of albumin-or-
ganic anion complexes (Ockner et al., 1983). Although
the exact cific albumin receptor on the sinusoidal pla
membrane, which facilitates dissociation of albumin
ganic anion complexes (Ockner et al., 1983). Althe
the exact nature of this (nonspecific) interaction rem
unclear, surface-me membrane, which facilitates dissociation of albumin-organic anion complexes (Ockner et al., 1983). Although the exact nature of this (nonspecific) interaction remains unclear, surface-mediated facilitation of albumin-organ ganic anion complexes (Ockner et al., 1983). Although
the exact nature of this (nonspecific) interaction remains
unclear, surface-mediated facilitation of albumin-or-
ganic anion dissociation probably plays a role in hepat e exact nature of this (nonspecific) interaction remaindear, surface-mediated facilitation of albuminimic anion dissociation probably plays a role in heps take processes in vivo.
As extensively reviewed elsewhere (Berk and

unclear, surface-mediated facilitation of albumin-or-
ganic anion dissociation probably plays a role in hepatic
uptake processes in vivo.
As extensively reviewed elsewhere (Berk and Strem-
mel, 1986; Berk et al., 1987; Kui ganic anion dissociation probably plays a role in hepatic
uptake processes in vivo.
As extensively reviewed elsewhere (Berk and Strem-
mel, 1986; Berk et al., 1987; Kuipers and Vonk, 1991),
the hepatic uptake of organic an uptake processes in vivo.

As extensively reviewed elsewhere (Berk and Strem-

mel, 1986; Berk et al., 1987; Kuipers and Vonk, 1991)

the hepatic uptake of organic anions such as bilirubin

indocyanine green, sulfobromopht As extensively reviewed elsewhere (Berk and Strem-
mel, 1986; Berk et al., 1987; Kuipers and Vonk, 1991),
the hepatic uptake of organic anions such as bilirubin,
indocyanine green, sulfobromophthalein and rose ben-
gal has the hepatic uptake of organic anions such as bilirubin,
indocyanine green, sulfobromophthalein and rose ben-
gal has been shown to meet the kinetic criteria for
carrier-mediated transport in a variety of experimental the hepatic uptake of organic anions such as bilirubin
indocyanine green, sulfobromophthalein and rose ben
gal has been shown to meet the kinetic criteria fo
carrier-mediated transport in a variety of experiments
systems. indocyanine green, sulfobromophthalein and rose bengal has been shown to meet the kinetic criteria for carrier-mediated transport in a variety of experimental systems. Uptake of organic anions proceeds sodium independently gal has been shown to meet the kinetic criteria for carrier-mediated transport in a variety of experimental systems. Uptake of organic anions proceeds sodium independently (Potter et al., 1987) and is accelerated in the pr rrier-mediated transport in a variety of experimental
stems. Uptake of organic anions proceeds sodium inde-
ndently (Potter et al., 1987) and is accelerated in the
esence of chloride (Min et al., 1990; Wolkoff et al., 1987 systems. Uptake of organic anions proceeds sodium inc
pendently (Potter et al., 1987) and is accelerated in t
presence of chloride (Min et al., 1990; Wolkoff et al., 198
Several distinct, class-specific binding proteins in

col therapy seems to normalize very low density lipopro-
tein composition, contributing to the accelerated re-
moval of triglycerides from blood of streptozotocin-
diabetic rats (Yoshino et al., 1991). Levels of transport pendently (Potter et al., 1987) and is accelerated in the
presence of chloride (Min et al., 1990; Wolkoff et al., 1987).
Several distinct, class-specific binding proteins in the
sinusoidal membrane of the hepatocyte probab presence of chloride (Min et al., 1990; Wolkoff et al., 1987).
Several distinct, class-specific binding proteins in the
sinusoidal membrane of the hepatocyte probably repre-
sent separate uptake systems for different class Several distinct, class-specific binding proteins in the
sinusoidal membrane of the hepatocyte probably repre-
sent separate uptake systems for different classes of
negatively charged compounds, i.e., for organic anions,
b sinusoidal membrane of the hepatocyte probably repre
sent separate uptake systems for different classes o
negatively charged compounds, i.e., for organic anions
bile acids, and fatty acids. For example, a 107 kD proteir
c sent separate uptake systems for different classes of
negatively charged compounds, i.e., for organic anions,
bile acids, and fatty acids. For example, a 107 kD protein
called bilitranslocase was reported to consist of tw negatively charged compounds, i.e., for organic anions,
bile acids, and fatty acids. For example, a 107 kD protein
called bilitranslocase was reported to consist of two non-
identical subunits ($\alpha = 37$ kD, $\beta = 35.5$ kD) bile acids, and fatty acids. For example, a 107 kD protein
called bilitranslocase was reported to consist of two non-
identical subunits ($\alpha = 37$ kD, $\beta = 35.5$ kD) with a
subunit composition of $\alpha_2\beta$ (Lunazzi et al., called bilitranslocase was reported to consist of two non-
identical subunits ($\alpha = 37$ kD, $\beta = 35.5$ kD) with a
subunit composition of $\alpha_2\beta$ (Lunazzi et al., 1982). An
antibody to bilitranslocase inhibited bilirubin identical subunits ($\alpha = 37$ kD, $\beta = 35.5$ kD) with subunit composition of $\alpha_2\beta$ (Lunazzi et al., 1982). A antibody to bilitranslocase inhibited bilirubin transport in the isolated perfused rat liver and insertion of subunit composition of $\alpha_2\beta$ (Lunazzi et al., 1982). A
antibody to bilitranslocase inhibited bilirubin transpo
in the isolated perfused rat liver and insertion of th
protein in liposomes reconstituted sulfobromophthale antibody to bilitranslocase inhibited bilirubin transport
in the isolated perfused rat liver and insertion of the
protein in liposomes reconstituted sulfobromophthalein
transport (Sottocasa et al., 1982). Also, a 55 kD sul in the isolated perfused rat liver and insertion of the protein in liposomes reconstituted sulfobromophthalein
transport (Sottocasa et al., 1982). Also, a 55 kD sulfo-
bromophthalein and bilirubin binding protein was iso-
 protein in liposomes reconstituted sulfobromophthalein
transport (Sottocasa et al., 1982). Also, a 55 kD sulfo-
bromophthalein and bilirubin binding protein was iso-
lated from a rat liver plasma membrane fraction en-
rich transport (Sottocasa et al., 1982). Also, a 55 kD sulfo-
bromophthalein and bilirubin binding protein was iso-
lated from a rat liver plasma membrane fraction en-
riched in basolateral domains (Stremmel et al., 1983).
Mono bromophthalein and bilirubin binding protein was isolated from a rat liver plasma membrane fraction enriched in basolateral domains (Stremmel et al., 1983).
Monospecific antibodies raised against this protein in-
hibited t lated from a rat liver plasma membrane fraction en-
riched in basolateral domains (Stremmel et al., 1983).
Monospecific antibodies raised against this protein in-
hibited the uptake of sulfobromophthalein and bilirubin
by riched in basolateral domains (Stremmel et al., 1983).
Monospecific antibodies raised against this protein in-
hibited the uptake of sulfobromophthalein and bilirubin
by freshly isolated rat hepatocytes (Stremmel and Berk, by freshly isolated rat hepatocytes (Stremmel and Berk, hibited the uptake of sulfobromophthalein and bilirubin
by freshly isolated rat hepatocytes (Stremmel and Berk,
1986) and by Hep G2 human hepatoma cells (Stremmel
and Diede, 1990). Using somewhat different methodol-
ogy, a by freshly isolated rat hepatocytes (Stremmel and Berk, 1986) and by Hep G2 human hepatoma cells (Stremmel and Diede, 1990). Using somewhat different methodology, an organic anion binding protein was isolated from rat live

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

4
1980) with similar molecular weight and binding char-
acteristics. acteristics.

At least three different mechanisms are involved in
 At least three different mechanisms are involved in

the basolateral uptake of bile acids into rat hepatocytes: sinu

(a) a Na⁺-independent carrier-mediated proces (a)) 1980) with similar molecular weight and binding characteristics.

At least three different mechanisms are involved in teritie basolateral uptake of bile acids into rat hepatocytes: since (a) a Na⁺-independent carri At least three different mechanisms are involved in the basolateral uptake of bile acids into rat hepatocytes: (a) a Na⁺-independent carrier-mediated process, (b) a pNa⁺-dependent bile acid uptake system, and (c) n the basolateral uptake of bile acids into rat hepatocytes:
 (a) a Na⁺-independent carrier-mediated process, (b) a

Na⁺-dependent bile acid uptake system, and (c) nonionic

diffusion followed by intracellular bindin (a) a Na⁺-independent carrier-mediated process, (b) a port systems with similar molecular weights on sodium Na⁺-dependent bile acid uptake system, and (c) nonionic dodecylsulfate-gel electrophoresis.
diffusion followe **Meier et a!., 1984). The saturable, carrier-mediated,** $Na⁺$ -independent uptake may occur for certain bile acid derivatives including cholate, glycocholate and glycocheproteins and amidation with taurine or glycine or c
jugation with sulfate or glucuronidate (Meier, 19
Meier et al., 1984). The saturable, carrier-mediat
Na⁺-independent uptake may occur for certain bile a
derivatives inc jugation with sulfate or glucuronidate (Meier, 1991;
Meier et al., 1984). The saturable, carrier-mediated,
Na⁺-independent uptake may occur for certain bile acid
derivatives including cholate, glycocholate and glycoche-
 Meier et al., 1984). The saturable, carrier-mediated,
Na⁺-independent uptake may occur for certain bile acid
derivatives including cholate, glycocholate and glycoche-
nodeoxycholate (Van Dyke et al., 1982). More importa Na^+ -independent uptake may occur for certain bile acid
derivatives including cholate, glycocholate and glycoche-
nodeoxycholate (Van Dyke et al., 1982). More important
quantitatively, the electrogenic basolateral $Na^+/bile$ derivatives including cholate, glycocholate and glycocholate nodeoxycholate (Van Dyke et al., 1982). More importan quantitatively, the electrogenic basolateral Na⁺/bile acid cotransport system moves trihydroxy conjugated nodeoxycholate (Van Dyke et al., 1982). More importan
quantitatively, the electrogenic basolateral Na⁺/bil
acid cotransport system moves trihydroxy conjugate
bile salts such as taurocholate. The hepatocellula
Na⁺/bile quantitatively, the electrogenic basolateral Na⁺/bile the acid cotransport system moves trihydroxy conjugated by bile salts such as taurocholate. The hepatocellular AdMa⁺/bile acid uptake system has broad substrate sp acid cotransport system moves trihydroxy conjugated
bile salts such as taurocholate. The hepatocellular
 $Na^+/$ bile acid uptake system has broad substrate spec-
ificity, and possible cosubstrates include steroids and
steroi bile salts such as taurocholate. The hepatocellular Additional details of the hepatic uptake of organic cat-
Na⁺/bile acid uptake system has broad substrate spec-
ificity, and possible cosubstrates include steroids and Na⁺/bile acid uptake system has broad substrate spec-
ificity, and possible cosubstrates include steroids and
isteroid metabolites, cyclic oligopeptides, and numerous
drugs. The Na⁺/bile acid cotransport system starts ificity, and possible cosubstrates include steroids and in
steroid metabolites, cyclic oligopeptides, and numerous
drugs. The Na⁺/bile acid cotransport system starts to be
 B .
expressed on the basolateral membrane at l steroid metabolites, cyclic oligopeptides, and numerous
drugs. The Na⁺/bile acid cotransport system starts to be
expressed on the basolateral membrane at late gestation
in rodents (fetal days 16 to 20) and reaches > 90% artigs. The Na 7 bile acid cotrainsport system starts to be
expressed on the basolateral membrane at late gestation
in rodents (fetal days 16 to 20) and reaches > 90% of the
and Levy, 1990). Transport function is associate in rodents (fetal days 16 to 20) and reaches $> 90\%$ of the adult level approximately 28 days after birth (Von Dippe and Levy, 1990). Transport function is associated with a 48 to 49 kD protein (Ananthanarayanan et al., and Levy, 1990). Transport function is associated with a and Levy, 1990). Transport function is associated with a
48 to 49 kD protein (Ananthanarayanan et al., 1988). to
Na⁺-dependent taurocholate uptake has been expressed S
in *Xenopus laevis* oocytes (Hagenbuch et al., 1990 48 to 49 kD protein (Ananthanarayanan et al., 1988) Na^+ -dependent taurocholate uptake has been expressee in *Xenopus laevis* occytes (Hagenbuch et al., 1990). Finally, the carrier might actually exist as a trimeric of t ma -aependent taurocholate uptake has been expressed
in Xenopus laevis oocytes (Hagenbuch et al., 1990). Fi
nally, the carrier might actually exist as a trimeric of
tetrameric aggregate in the plasma membrane, inas
much as many, the carrier imght actually exist as a trimeric or (Centerameric aggregate in the plasma membrane, inas-
much as recent radiation inactivation data have suggested a minimal functional molecular mass of the Na⁺- by
c much as recent radiation inactivation data have sug-
gested a minimal functional molecular mass of the Na⁺-
coupled bile acid uptake system of 170 kD (Elsner and
Ziegler, 1989). Cloning and sequencing of this important
h gested a minimal functional molecular m
coupled bile acid uptake system of 170 l
Ziegler, 1989). Cloning and sequencing of
hepatocellular bile acid transporting pol
rently in progress in several laboratories
Finally, undis upled bile acid uptake system of 170 kD (Elsner and al.
egler, 1989). Cloning and sequencing of this important tat
patocellular bile acid transporting polypeptide is cur-
bis
muly in progress in several laboratories. Trina

Ziegler, 1989). Cloning and sequencing of this important
hepatocellular bile acid transporting polypeptide is cur-
rently in progress in several laboratories.
Finally, undissociated (protonated) unconjugated bile
acids are hepatocellular bile acid transporting polypeptide is currently in progress in several laboratories.

Finally, undissociated (protonated) unconjugated bile

acids are especially prone to diffuse passively across

biological rently in progress in several laboratories.
Finally, undissociated (protonated) unconjugated bile
acids are especially prone to diffuse passively across
biological membranes. Nonsaturable uptake by nonionic
diffusion is de Finally, undissociated (protonated) unconjugated l
acids are especially prone to diffuse passively acr
biological membranes. Nonsaturable uptake by nonic
diffusion is definitely relevant for certain hydropho
bile acids suc biological membranes. Nonsaturable uptake by nonionic
diffusion is definitely relevant for certain hydrophobic
bile acids such as ursodeoxycholic and other unconju-
gated mono- and dihydroxy bile acids (Lake et al., 1988), diffusion is definitely relevant for certain hydrophobic
bile acids such as ursodeoxycholic and other unconju-
gated mono- and dihydroxy bile acids (Lake et al., 1988),
and may also occur for more water-soluble unconjugate diffusion is definitely relevant for certain hydrophologie acids such as ursodeoxycholic and other uncongated mono- and dihydroxy bile acids (Lake et al., 198 and may also occur for more water-soluble unconjugat bile acids bile acids such as ursodeoxycholic and other unconju-
gated mono- and dihydroxy bile acids (Lake et al., 1988), streptozotocin (Ooi et al., 1992).
and may also occur for more water-soluble unconjugated Lack of insulin in d gated mono- and dihydroxy bile acids (Lake et al., 1988), strepto
and may also occur for more water-soluble unconjugated Lack
bile acids such as cholic acid (Caflisch et al., 1990). animal
The isolation of specific bindin

and may also occur for more water-soluble unconjubile acids such as cholic acid (Caflisch et al., 199
The isolation of specific binding proteins exh
transport functions for organic anions, which difference described for b those described for bile acids $(\sim 48 \text{ kD})$ (Ananthanarayanan et al., 1988) and for fatty acids $(\sim 40 \text{ kD})$ (Stremmel et al., 1985), provides evidence that there are separate The isolation of specific binding proteins exhibiting
transport functions for organic anions, which differ from
those described for bile acids $(\sim 48 \text{ kD})$ (Ananthanaray-
anan et al., 1988) and for fatty acids $(\sim 40 \text{ k$ transport functions for organic anions, which differ from
those described for bile acids $(\sim 48 \text{ kD})$ (Ananthanaray-
anan et al., 1988) and for fatty acids $(\sim 40 \text{ kD})$ (Stremmel
et al., 1985), provides evidence that th those described for bile acids $(\sim 48 \text{ kD})$ (Ananthanaray-
anan et al., 1988) and for fatty acids $(\sim 40 \text{ kD})$ (Stremmel
et al., 1985), provides evidence that there are separate
uptake systems for different classes of n anan et al., 1988) and for fatty acids $(\sim 40 \text{ kD})$ (Stremme
et al., 1985), provides evidence that there are separat
uptake systems for different classes of negatively
charged compounds. Reported interactions between or
 et al., 1985), provides evidence that there are separate
uptake systems for different classes of negatively
charged compounds. Reported interactions between or-
ganic anions and bile acids and a variety of other com-
pound uptake systems for different classes of negatively
charged compounds. Reported interactions between or-
ganic anions and bile acids and a variety of other com-
pounds in various studies suggest that two transport
systems e charged compounds. Reported interactions between organic anions and bile acids and a variety of other compounds in various studies suggest that two transport systems exist with overlapping substrate specificities (Buscher ganic anions and bile acids and a variety of other compounds in various studies suggest that two transport systems exist with overlapping substrate specificities (Buscher et al., 1986; Frimmer and Ziegler, 1988; Meijer et pounds in various studies suggest that two transport rosystems exist with overlapping substrate specificities rat (Buscher et al., 1986; Frimmer and Ziegler, 1988; Meijer inset al., 1990; Petzinger et al., 1987; Zimmerli e systems exist with overlapping substrate specificities rate.

(Buscher et al., 1986; Frimmer and Ziegler, 1988; Meijer ins

et al., 1990; Petzinger et al., 1987; Zimmerli et al., 1989). tra

Further studies are needed to d

FORTH SANDERS
the Na⁺-independent anion system is the 55 kD protein.
However, as long as the proteins have not been charac-EXAMPERS

the Na⁺-independent anion system is the 55 kD prote

However, as long as the proteins have not been char

terized, one can not exclude the possibility that t FORTHERS
the Na⁺-independent anion system is the 55 kD protein.
However, as long as the proteins have not been charac-
terized, one can not exclude the possibility that the
sinusoidal membrane contains multiple distinct the Na⁺-independent anion system is the 55 kD protein However, as long as the proteins have not been charaterized, one can not exclude the possibility that the sinusoidal membrane contains multiple distinct transport sys the Na⁺-independent anion system is the 55 kD protein.
However, as long as the proteins have not been characterized, one can not exclude the possibility that the
sinusoidal membrane contains multiple distinct trans-
port However, as long as the protein
terized, one can not exclude t
sinusoidal membrane contains
port systems with similar molec
dodecylsulfate-gel electrophores
At least two distinct uptake sy **At least two distinct the possibility that the sinusoidal membrane contains multiple distinct transport systems with similar molecular weights on sodium dodecylsulfate-gel electrophoresis.
At least two distinct uptake sys**

port systems with similar molecular weights on sodium
dodecylsulfate-gel electrophoresis.
At least two distinct uptake systems transport organic
cations and have separate, albeit overlapping, substrate
specificities (Neef dodecylsulfate-gel electrophoresis.
At least two distinct uptake systems transport organic
cations and have separate, albeit overlapping, substrate
specificities (Neef et al., 1984a,b; Mol and Meijer, 1990;
Steen and Meije At least two distinct uptake systems transport organic
cations and have separate, albeit overlapping, substrate
specificities (Neef et al., 1984a,b; Mol and Meijer, 1990;
Steen and Meijer, 1991). The monovalent cation car specificities (Neef et al., 1984a,b; Mol and Meijer, 1990;
Steen and Meijer, 1991). The monovalent cation carrier
is an energy-requiring, Na^+ -independent system that is
not inhibited by ouabain or taurocholate but stron Steen and Meijer, 1991). The monovalent cation carrier
is an energy-requiring, Na^+ -independent system that is
not inhibited by ouabain or taurocholate but strongly
blocked by sulfhydryl reagents and choline. Uptake of
t is an energy-requiring, Na^+ -independent system that is not inhibited by ouabain or taurocholate but strongly not inhibited by ouabain or taurocholate but strongly
blocked by sulfhydryl reagents and choline. Uptake of
the more lipophilic bivalent cations is strongly inhibited
by ouabain and taurocholate and unaffected by choline.
 blocked by sulfhydryl reagents and choline. Uptake the more lipophilic bivalent cations is strongly inhibite by ouabain and taurocholate and unaffected by choline Additional details of the hepatic uptake of organic cations the more lipophilic bivalent cations is strongly
by ouabain and taurocholate and unaffected h
Additional details of the hepatic uptake of or
ions may be found in other reviews (Meijer, 1
inger et al., 1989a; Stein and Meij *B. Effects of Insulin and Insulin Deficiency on*
B. Effects of Insulin and Insulin Deficiency on
Hepatic Uptake
The direct influence of insulin on hepatic protein

adult level approximately 28 days after birth (Von Dippe thesis may be felt both by the enzymes involved in he-
and Levy, 1990). Transport function is associated with a patic biotransformation and by the protein carriers ger et al., 1989a; Stein and Meijer, 1991).
 Effects of Insulin and Insulin Deficiency on
 epatic Uptake

The direct influence of insulin on hepatic protein syn-

esis may be felt both by the enzymes involved in he-B. Effects of Insulin and Insulin Deficiency on
Hepatic Uptake
The direct influence of insulin on hepatic protein syn-
thesis may be felt both by the enzymes involved in he-
patic biotransformation and by the protein carri partic Uptake

Hepatic Uptake

The direct influence of insulin on hepatic protein syn-

thesis may be felt both by the enzymes involved in he-

patic biotransformation and by the protein carriers con-

trolling hepatic upt The direct influence of insulin on hepatic protein syn-
thesis may be felt both by the enzymes involved in he-
patic biotransformation and by the protein carriers con-
trolling hepatic uptake and canalicular secretion.
Sev The direct influence of insulin on hepatic protein synthesis may be felt both by the enzymes involved in hepatic biotransformation and by the protein carriers controlling hepatic uptake and canalicular secretion.
Several s thesis may be felt both by the enzymes involved in hepatic biotransformation and by the protein carriers controlling hepatic uptake and canalicular secretion.
Several studies suggest that synthesis of some hepatic proteins patic biotransformation and by the protein carriers controlling hepatic uptake and canalicular secretion.
Several studies suggest that synthesis of some hepatic
proteins is also affected by insulin-dependent diabetes
(Cedo trolling hepatic uptake and canalicular secretion.
Several studies suggest that synthesis of some hepatic
proteins is also affected by insulin-dependent diabetes
(Cedola et al., 1975; Ingebretson et al., 1972; Jefferson,
1 Several studies suggest that synthesis of some hepatic proteins is also affected by insulin-dependent diabetes (Cedola et al., 1975; Ingebretson et al., 1972; Jefferson, 1980; Jefferson et al., 1983; Pain and Garlick, 197 proteins is also affected by insulin-dependent diabetes (Cedola et al., 1975; Ingebretson et al., 1972; Jefferson, 1980; Jefferson et al., 1983; Pain and Garlick, 1974). Enzymes whose activities are affected by insulin tr (Cedola et al., 1975; Ingebretson et al., 1972; Jefferson, 1980; Jefferson et al., 1983; Pain and Garlick, 1974). Enzymes whose activities are affected by insulin treatment or by diabetes include γ -cystathionase, cys-
 1980; Jefferson et al., 1983; Pain and Garlick, 1974). Enzymes whose activities are affected by insulin treatment or by diabetes include γ -glutamylcysteine synthetase (Lu et al., 1992), tyrosine aminotransferase, γ zymes whose activities are affected by insulin treatmer
by diabetes include γ -glutamylcysteine synthetase (L
al., 1992), tyrosine aminotransferase, γ -cystathionase,
tathionine β -synthase (Hargrove et al., 1989), by diabetes include γ -glutamylcysteine synthetase (Lu et al., 1992), tyrosine aminotransferase, γ -cystathionase, cystathionine β -synthase (Hargrove et al., 1989), fructose-1,6-bisphosphatase (Jiminez-Jativa et al al., 1992), tyrosine aminotransierase, γ-cystatinonase, cystathionine β-synthase (Hargrove et al., 1989), fructose-1,6-
bisphosphatase (Jiminez-Jativa et al., 1992), γ-glutamyl-
transpeptidase (Vacek et al., 1990; Watkins bisphosphatase (Jiminez-Jativa et al., 1992), γ -glutamyl-
transpeptidase (Vacek et al., 1990; Watkins and Smith,
1993), Na⁺-K⁺-ATPase (Carnovale et al., 1991) and serine
proteinase (Guenet et al., 1989). In additio transpeptidase (Vacek et al., 1990; Watkins and Smith, 1993), Na⁺-K⁺-ATPase (Carnovale et al., 1991) and serine proteinase (Guenet et al., 1989). In addition, hepatic concentrations of insulin-like growth factor-bindin 1993), Na⁺-K⁺-ATPase (Carnovale et al., 1991) and serine
proteinase (Guenet et al., 1989). In addition, hepatic con-
centrations of insulin-like growth factor-binding protein-1
can be decreased by administration of ex centrations of insulin-like growth factor-binding protein-1
can be decreased by administration of exogenous insulin
and be increased by induction of diabetes in rats with
streptozotocin (Ooi et al., 1992).
Lack of insulin can be decreased by administration of exogenous insulin

can be decreased by administration of exogenous insuline
and be increased by induction of diabetes in rats with
streptozotocin (Ooi et al., 1992).
Lack of insulin in diabetic humans and experimental
animals may have pronou and be increased by induction of diabetes in rats with
streptozotocin (Ooi et al., 1992).
Lack of insulin in diabetic humans and experimenta
animals may have pronounced effects on hepatic uptake
of chemicals, drug biotrans streptozotocin (Ooi et al., 1992).
Lack of insulin in diabetic humans and experimental
animals may have pronounced effects on hepatic uptake
of chemicals, drug biotransformation, and subsequent
biliary excretion. For examp Lack of insulin in diabetic humans and experimental
animals may have pronounced effects on hepatic uptake
of chemicals, drug biotransformation, and subsequent
biliary excretion. For example, the rate of uptake of
isoniazid of chemicals, drug biotransformation, and subsequent biliary excretion. For example, the rate of uptake of isoniazid into liver, lung, diaphragm and brain is enhanced in the presence of insulin, but the mechanism of chemicals, drug biotransformation, and subsequent
biliary excretion. For example, the rate of uptake of
isoniazid into liver, lung, diaphragm and brain is en-
hanced in the presence of insulin, but the mechanism
has yet biliary excretion. For example, the rate of uptake of isoniazid into liver, lung, diaphragm and brain is enhanced in the presence of insulin, but the mechanism has yet to be elucidated (Danysz and Wisniewski, 1965; Wisniew isoniazid into liver, lung, diaphragm and brain is enhanced in the presence of insulin, but the mechanism
has yet to be elucidated (Danysz and Wisniewski, 1965;
Wisniewski, 1968). Dodeur and coworkers (1982) assert
that th hanced in the presence of insulin, but the mechani
has yet to be elucidated (Danysz and Wisniewski, 19
Wisniewski, 1968). Dodeur and coworkers (1982) ass
that the diabetes-induced impairment of binding prot
is responsible has yet to be elucidated (Danysz and Wisniewski, 1968). Wisniewski, 1968). Dodeur and coworkers (1982) asset
that the diabetes-induced impairment of binding proteination-diabetic is responsible for a 50% decrease in the up Wisniewski, 1968). Dodeur and coworkers (1982) assert
that the diabetes-induced impairment of binding protein
is responsible for a 50% decrease in the uptake of asialoo-
rosomucoid by hepatocytes from streptozotocin-diabet that the diabetes-induced impairment of binding protein
is responsible for a 50% decrease in the uptake of asialoo-
rosomucoid by hepatocytes from streptozotocin-diabetic
rats. Future studies will need to determine whether is responsible for a 50% decrease in the uptake
rosomucoid by hepatocytes from streptozotoc
rats. Future studies will need to determine whe
insulin injection directly affects the synthesi
transport proteins involved in hep somucoid by hepatocytes from streptozotocin-diabetic
ts. Future studies will need to determine whether or not
sulin injection directly affects the synthesis of those
ansport proteins involved in hepatic uptake.
Diabetes al rats. Future studies will need to determine whether or not
insulin injection directly affects the synthesis of those
transport proteins involved in hepatic uptake.
Diabetes also affects the balance of electrolytes and
thei

aspet

V. Diabetes and **Biotransformation**

Na⁺, K⁺, and bicarbonate ions. These disruptions may
influence either the uptake (Erlinger, 1982; Schar-
schmidt et al., 1975) or excretion (Watkins and Noda,
1986) of Na⁺-dependent chemicals. Increases in the size
 Na', K', and bicarbonate ions. These disruptions may
influence either the uptake (Erlinger, 1982; Schar-
schmidt et al., 1975) or excretion (Watkins and Noda,
1986) of Na⁺-dependent chemicals. Increases in the size
of th influence either the uptake (Erlinger, 1982; Schar-
schmidt et al., 1975) or excretion (Watkins and Noda,
1986) of Na⁺-dependent chemicals. Increases in the size
of the bile acid pool in diabetic rats may also influence schmidt et al., 1975) or excretion (Watkins and Noda, 1986) of Na⁺-dependent chemicals. Increases in the size of the bile acid pool in diabetic rats may also influence uptake. For example, the disappearance of rose benga 1986) of Na⁺-dependent chemicals. Increases in the size
of the bile acid pool in diabetic rats may also influence
uptake. For example, the disappearance of rose bengal, a
bile acid-dependent cholephilic anion, from seru of the bile acid pool in diabetic rats may also influence
uptake. For example, the disappearance of rose bengal, a
bile acid-dependent cholephilic anion, from serum is in-
creased in diabetic rats, as is biliary excretion of the sine acid poor in that the rate indy this minimized pharmacologically or toxicologically active agents or de-
uptake. For example, the disappearance of rose bengal, a
bile acid-dependent cholephilic anion, from seru Preliminary studies of taurocholate transport into
hepatocytes isolated from normal, diabetic, and insulin-
normal process in home content when they cannot are treated diabetic rats indicate that the Km for uptake is generally quite small.
unchanged, whereas v_{max} is increased (Schwarz and of greater interest) excretion inhibited (Watkins and Noda, 1986). ger

Preliminary studies of taurocholate transport into

hepatocytes isolated from normal, diabetic, and insulin-

treated diabetic rats indicate that the Km for uptake is

un Preliminary studies of taurocholate transport into
hepatocytes isolated from normal, diabetic, and insulin-
treated diabetic rats indicate that the Km for uptake is
unchanged, whereas v_{max} is increased (Schwarz and
Watk BIOBILIARY FUNCTION

V. Diabetes and Biotransformation

Phase I Reactions

Biotransformation is the process, primarily in the

ver, by which the body either metabolizes chemicals to V. Diabetes and Biotransformation
A. Phase I Reactions
Biotransformation is the process, primarily in the
liver, by which the body either metabolizes chemicals to
pharmacologically or toxicologically active agents or de-A. Phase I Reactions
Biotransformation is the process, primarily in the
liver, by which the body either metabolizes chemicals to
pharmacologically or toxicologically active agents or de-
toxifies endogenous or exogenous co A. Thuse I Reuctions
Biotransformation is the process, primarily in the
liver, by which the body either metabolizes chemicals to
pharmacologically or toxicologically active agents or de-
toxifies endogenous or exogenous co Biotransformation is the process, primarily in the
liver, by which the body either metabolizes chemicals to
pharmacologically or toxicologically active agents or de-
toxifies endogenous or exogenous compounds and pre-
pare liver, by which the body either metabolizes chemicals to
pharmacologically or toxicologically active agents or de-
toxifies endogenous or exogenous compounds and pre-
pares them for elimination. One important component of
 pharmacologically or toxicologically active agents or de-
toxifies endogenous or exogenous compounds and pre-
pares them for elimination. One important component of
biotransformation is the microsomal cytochrome P450-
depe toxifies endogenous or exogenous compounds and pre-
pares them for elimination. One important component of
biotransformation is the microsomal cytochrome P450-
dependent mono-oxidase system. The summary in table
1 suggests pares them for elimination. One important component obiotransformation is the microsomal cytochrome P450 dependent mono-oxidase system. The summary in table 1 suggests that there is no consistent evidence tha genetic or ch biotransformation is the microsomal cytochrome P450
dependent mono-oxidase system. The summary in table 1
suggests that there is no consistent evidence the
genetic or chemically-induced diabetes alters total cyto
chrome P4 1 suggests that there is no consistent evidence that genetic or chemically-induced diabetes alters total cyto-
chrome P450 concentrations in animal models. How-
ever, changes in heme content, when they occur, are
generally quite small.
Of greater interest is the observation ever, changes in heme content, when they occur, are

cyte plasma membrane vesicles indicates that there is

no effect of diabetes on canalicular-enriched hepatocyte plasma membrane vesicles indicates that there is

no effect of diabetes on canalicular taurocholate uptake

i Watkins, unpublished results). More extensive work in
basolateral-enriched and canalicular-enriched hepato-
cyte plasma membrane vesicles indicates that there is
no effect of diabetes on canalicular taurocholate uptake
in basolateral-enriched and canalicular-enriched hepatocyte plasma membrane vesicles indicates that there is no effect of diabetes on canalicular taurocholate uptake into the presence or absence of ATP. In contrast, a two-fo cyte plasma membrane vesicles indicates that there is ously on effect of diabetes on canalicular taurocholate uptake (table 2 in the presence or absence of ATP. In contrast, a two-fold $\frac{1}{20e}$ et increase in v_{max} is diabetic rats, whereas uptake into basolateral membranes is similar in preparations from normal and insularies in-

lin-treated diabetic rats (Watkins et al., unpublished Tho

results). These data indicate that the uncontr branes is similar in preparations from normal and insu-
lin-treated diabetic rats (Watkins et al., unpublished Thomas et al., 1989), fasting (Hong et al., 1987), and ace-
results). These data indicate that the uncontrolled results). These data indicate that the uncontrolled diabetic rat liver adapts to the increased bile acid pool by modulating the maximal velocity of taurocholate across at the basolateral surface of the hepatocyte and that Of greater interest is the observation that the locus of this diabetic effect is a particular isozyme of the P450 component of the mixed-function oxidase system, variously called cytochrome P450j, P450DM/j or P450IIE generally quite small.

Of greater interest is the observation that the locus of

this diabetic effect is a particular isozyme of the P450

component of the mixed-function oxidase system, vari-

ously called cytochrome P45 Of greater interest is the observation that the locus
this diabetic effect is a particular isozyme of the P4
component of the mixed-function oxidase system, va
ously called cytochrome P450j, P450DM/j or P450I
(table 2) (P this diabetic effect is a particular isozyme of the P450
component of the mixed-function oxidase system, vari-
ously called cytochrome P450j, P450DM/j or P450IIE
(table 2) (Past and Cook, 1982; Thomas et al., 1987; Yama-
z component of the mixed-function oxidase system, variously called cytochrome P450j, P450DM/j or P450IIE (table 2) (Past and Cook, 1982; Thomas et al., 1987; Yamazoe et al., 1989b). Although present in untreated normal rats, ously called cytochrome P450j, P450DM/j or P450IIE
(table 2) (Past and Cook, 1982; Thomas et al., 1987; Yama-
zoe et al., 1989b). Although present in untreated normal
rats, P450IIE is predominant in females (Waxman et al., zoe et al., 1989b). Although present in untreated normal rats, P450IIE is predominant in females (Waxman et al., 1989) and has been shown to be induced by treatment with zoe et al., 1989b). Although present in untreated normal
rats, P450IIE is predominant in females (Waxman et al.,
1989) and has been shown to be induced by treatment with
isoniazid (Ryan et al., 1985), dimethylsulfoxide and rats, P450IIE is predominant in females (Waxman et al., 1989) and has been shown to be induced by treatment with isoniazid (Ryan et al., 1985), dimethylsulfoxide and pyrazoles (Thomas et al., 1987), ethanol (Sato et al., 1 1989) and has been shown to be induced by treatment wit
isoniazid (Ryan et al., 1985), dimethylsulfoxide and pyrz
zoles (Thomas et al., 1987), ethanol (Sato et al., 198
Thomas et al., 1989), fasting (Hong et al., 1987), an reau and Schenkman, 1988a, b; Funae et al., 1988; Past zoles (Thomas et al., 1987), ethanol (Sato et al., 1981;
Thomas et al., 1989), fasting (Hong et al., 1987), and ace-
tone (Johansson et al., 1986), as well as by diabetes (Fav-
reau and Schenkman, 1988a, b; Funae et al., 1 Thomas et al., 1989), fasting (Hong et al., 1987), and acetone (Johansson et al., 1986), as well as by diabetes (Favreau and Schenkman, 1988a, b; Funae et al., 1988; Past and Cook, 1982), perhaps as a result of ketone bodi tone (Johansson et al., 1986), as well as by diabetes (Favreau and Schenkman, 1988a, b; Funae et al., 1988; Past and Cook, 1982), perhaps as a result of ketone bodies in the blood (Bellward et al., 1988; Favreau et al., 19 reau and Schenkman, 1988a, b; Funae et al., 1988; Past
and Cook, 1982), perhaps as a result of ketone bodies in the
blood (Bellward et al., 1988; Favreau et al., 1987) or in the
liver (Watkins et al., 1988). In fact, Song and Cook, 1982), perhaps as a result of ketone bodies in the blood (Bellward et al., 1988; Favreau et al., 1987) or in the liver (Watkins et al., 1988). In fact, Song and coworkers (1987) have measured an increase in P450I

The effect of diabetes on total hepatic cytochrome P-450 levels
Femalet **Reversel** Source TABLE 1

. The effect of diabetes on total hepatic cytochrome P-450 levels

Source Insulin Reversal

SD* rat STZ n.c. Dong et al., 1988; Faas and Carter, 1980

SD rat STZ n.c. Eacho and Weiner, 1980 Animal Diabetes Malet Femalet Insulin Reversal

SD^{*} rat STZ n.c. Dong et al., 1988; Faas and C.

SD rat STZ n.c. Eacho and Weiner, 1980

SD rat STZ 1 ves Eacho and Weiner, 1980; Favr Animal Diabetes Malet Femalet Reversal

SD[★] rat STZ n.c. Dong et al., 1988; Faas and Carter, 1980

SD rat STZ n.c. Eacho and Weiner, 1980; Favreau et al., 1987; Favreau and Schenkman

SD rat STZ ↑ yes Eacho and Weiner, Dong et al., 1988; Faas and Carter, 1980
Eacho and Weiner, 1980
Eacho and Weiner, 1980; Favreau et al., 1987; Favreau and Schenkman,
1988a; Reinke et al., 1978
Faas and Carter, 1980; Reinke et al., 1978; Zysset and Tlach, SD^{*} rat STZ n.c. Dong et al., 1988; Faas and Carter, 1980

SD rat STZ 1 yes Eacho and Weiner, 1980; Favreau et al., 1987; Favreau and Schenkman,

SD rat STZ 1 yes Faas and Carter, 1980; Reinke et al., 1978; Zysset and Tl SD rat STZ n.c. Eacho and Weiner, 1980

SD rat STZ † yes Eacho and Weiner, 1980; Favreau et al., 1987; Favreau

SD rat STZ † yes Faas and Carter, 1980; Reinke et al., 1978; Zysset and

SD rat STZ ↓ Taxes Mangels, 1988; Rei SD rat STZ ↑ yes Eacho and Weiner, 198

SD rat STZ ↑ yes Faas and Carter, 1980

SD rat STZ ↓ ↑ Watkins and Mangels,

SD rat alloxan n.c. Dong et al., 1988

Wistar rat alloxan ↑ Uchida et al., 1979 Note that the state of the <table>\n<tbody>\n<tr>\n<th>SD rat</th>\n<th>alloxan</th>\n<th>n.c.</th>\n<th>long et al., 1988</th>\n</tr>\n<tr>\n<td>Wistar rat</td>\n<td>alloxan</td>\n<td>↑</td>\n<td>Uchida et al., 1979</td>\n</tr>\n<tr>\n<td>Wistar rat</td>\n<td>alloxan</td>\n<td>n.c.</td>\n<td>Toda et al., 1987</td>\n</tr>\n<tr>\n<td>Wistar rat</td>\n<td>STZ</td>\n<td>n.c.</td>\n<td>Toda et al., 1987</td>\n</tr>\n<tr>\n<td>LE rat</td>\n<td>STZ</td>\n<td>n.c.</td>\n<td Wistar rat alloxan † Uchida et al., 1979

Wistar rat alloxan n.c. Toda et al., 1987

Wistar rat STZ n.c. Toda et al., 1987

Holtzmann rat STZ n.c. Ackerman and Leibman, 1977

BB/Wor rat genetic † yes Favreau and Schenkman, Wistar rat STZ n.c. Toda et al., 1987

LE rat STZ n.c. Toda et al., 1987

Holtzmann rat STZ n.c. Ackerman and Leibman, 1977

BB/Wor rat genetic ↑ yes Favreau and Schenkman, 1988b

WKY genetic 1 toda et al., 1988

wKY gene BB/Wor rat genetic n.c. Dong et al., 1988

WKY genetic ↓ Watkins and Mangels, 1987

mice genetic ↑ ↑ Knodell et al., 1984; Rouer and L

mice STZ ↑ ↑ yes Knodell et al., 1984; Rouer and L

mice genetic n.c. Watkins and Klu * VKY senetic ↓ Watkins and Mangels, 1987

ince senetic ↑ ↑ Knodell et al., 1984; Rouer and Leroux, 1980

senetic n.c. Watkins and Klueber, 1988

* SD, Sprague-Dawley; STZ, streptozotocin; LE, Long Evans, BB/Wor, Wistar,

TABLE 1

mice STZ
mice STZ
winners or mice (as indicated).
 \uparrow P450 levels: \uparrow , increased; the state of the sense
tice sense inc.

the sense of the series of the series of the series of the series of P450 levels: ↑, increased; ↓ decreased; n.c., no change.

bile acid-dependent cholephilic anion, from seru
creased in diabetic rats, as is biliary excretion a
flow, whereas the serum disappearance of amar
bile acid-independent anion, is unchanged and ita
excretion inhibited (Watk

flow, whereas the serum disappearance of amaranth
bile acid-independent anion, is unchanged and its bili-
excretion inhibited (Watkins and Noda, 1986).
Preliminary studies of taurocholate transport in
the patocytes isolate

hepatocytes isolated from normal, diabetic, and insult
treated diabetic rats indicate that the Km for uptake
unchanged, whereas v_{max} is increased (Schwarz ε
Watkins, unpublished results). More extensive work
basolat

mo effect of diabetes on canalicular taurocholate uptake
in the presence or absence of ATP. In contrast, a two-fol
increase in v_{max} is observed in taurocholate uptake in
basolateral-enriched plasma membrane fractions fr in the presence or absence of ATP. In contrast, a two-fol
increase in v_{max} is observed in taurocholate uptake int
basolateral-enriched plasma membrane fractions fror
diabetic rats, whereas uptake into basolateral mem
br basolateral-enriched plasma membrane fractions from
diabetic rats, whereas uptake into basolateral mem-

basolateral-enriched plasma membrane fractions from
diabetic rats, whereas uptake into basolateral mem-
branes is similar in preparations from normal and insu-
lin-treated diabetic rats (Watkins et al., unpublished
results

results). These data indicate that the uncontrolled dia-

betic rat liver adapts to the increased bile acid pool by
modulating the maximal velocity of taurocholate across
the basolateral surface of the hepatocyte and that insu-
lin treatment normalizes this effect. Additional res lin treatment normalizes this effect. Additional research
is needed to unequivocally demonstrate that diabetes
does not alter canalicular membrane transport.

⁶ WATKINS AND SANDERS **TABLE 2** *The effect ofdiabetes on hepatic cytochrome P-45011E levels*

Animal	Diabetes STZ	Malet	Insulin Reversal yes	Source		
$SD*$ rat				Bellward et al., 1988; Dong et al., 1988; Favreau et al., 1987; Favreau and Schenkman, 1988a; Yamazoe et al., 1989b		
SD rat	STZ.			Yamazoe et al., 1989a		
SD rat	alloxan		yes	Bellward et al., 1988; Dong et al., 1988; Past and Cook, 1982		
SD rat	alloxan			Yamazoe et al., 1989a		
LE rat	STZ		yes	Thomas et al., 1987		
Fisher rat	STZ/alloxan	n.c.		Chawalit et al., 1982		
BB/Wor rat	genetic		yes/no	Bellward et al., 1988; Dong et al., 1988; Favreau and Schenkman, 1988b		

 \dagger P-450 levels: \dagger , increased; \downarrow , decreased; n.c., no change.
have come to varying conclusions concerning the effect of diabetes on total P450 content (table 1), many studies * SD, Sprague Dawley; LE, Long Evans; BB/Wor, Fisher or Brattle \dagger P-450 levels: \uparrow , increased; \downarrow , decreased; n.c., no change.
have come to varying conclusions concerning the effect of diabetes on total P450 cont T P-450 levels: T , increased; J , decreased; n.c., no change.
have come to varying conclusions concerning the effectiable diabetes on total P450 content (table 1), many stude agree that cytochrome P450IIE is increased have come to varying conclusions concerning the effect of diabetes on total P450 content (table 1), many studies agree that cytochrome P450IIE is increased in streptozotocin-induced-, alloxan-induced-, or genetically-cause have come to varying concl
diabetes on total P450 co
agree that cytochrome P45
tocin-induced-, alloxan-indu
abetic animals (table 2).
Recent studies on the efabetes on total P450 content (table 1), many studies
ree that cytochrome P450IIE is increased in streptozo-
cin-induced-, alloxan-induced-, or genetically-caused di-
etic animals (table 2).
Recent studies on the effects of

tocin-induced-, alloxan-induced-, or genetically-caused diabetic animals (table 2).
Recent studies on the effects of diabetes on the P450-
mediated metabolism of various substrates are summa-
rized in table 3. This heterog right to the simulation of the sense
in the sense of diabetes on the P450-
neediated metabolism of various substrates are summa-
rized in table 3. This heterogeneous group of isozymes
has been shown in the rat to be modifi tramposed to the 2. The reflects of diabetes on the P450-

Recent studies on the effects of diabetes on the P450-

mediated metabolism of various substrates are summa-

increased in table 3. This heterogeneous group of iso Recent studies on the effects of diabetes on the P450-
mediated metabolism of various substrates are summa-
rized in table 3. This heterogeneous group of isozymes
has been shown in the rat to be modified by diabetes in
a s mediated metabolism of various substrates are surized in table 3. This heterogeneous group of isoz
has been shown in the rat to be modified by diabet
a substrate-specific manner. The most studied read
are aniline hydroxyla rized in table 5. This heterogeneous group of isozymes
has been shown in the rat to be modified by diabetes in
a substrate-specific manner. The most studied reactions
are aniline hydroxylation and aminopyrine N-demethy-
la has been shown in the rat to be modified by diabetes in
a substrate-specific manner. The most studied reactions
are aniline hydroxylation and aminopyrine N-demethy-
lation, both of which seem to be dependent on the sex of
 a substrate-specific manner. The most studied reactions nare aniline hydroxylation and aminopyrine N-demethy-
lation, both of which seem to be dependent on the sex of p
the animal (Faas and Carter, 1980; Rouer et al., 1982 are aniline hydroxylation and aminopyrine N-demethy
lation, both of which seem to be dependent on the sex of
the animal (Faas and Carter, 1980; Rouer et al., 1982
Skett and Joels, 1985). Induction of diabetes in male rat
b lation, both of which seem to be dependent on the sex of pyr
the animal (Faas and Carter, 1980; Rouer et al., 1982; dia
Skett and Joels, 1985). Induction of diabetes in male rats and
by alloxan, streptozotocin, or 6-aminon the animal (Faas and Carter, 1980; Rouer et al., 1982;
Skett and Joels, 1985). Induction of diabetes in male rats
by alloxan, streptozotocin, or 6-aminonicotinamide de-
creases activities of aminopyrine N-demethylase and
a Skett and Joels, 1985). Induction of diabetes in male rats
by alloxan, streptozotocin, or 6-aminonicotinamide de-
creases activities of aminopyrine N-demethylase and
aryl hydrocarbon [benzo(a)pyrene] hydroxylase—as well
as by alloxan, streptozotocin, or 6-aminonicotinamide decreases activities of aminopyrine N-demethylase and aryl hydrocarbon [benzo(a)pyrene] hydroxylase—as well as the biotransformation of hexobarbital—but increases aniline creases activities of aminopyrine N-demethylase are aryl hydrocarbon [benzo(a)pyrene] hydroxylase—as we as the biotransformation of hexobarbital—but increases aniline hydroxylase activity. In female rats, howeve induction aryl hydrocarbon [benzo(a)pyrene] hydroxylase—as well
as the biotransformation of hexobarbital—but increases
aniline hydroxylase activity. In female rats, however, ja
induction of diabetes increases the metabolism of aminas the biotransformation of hexobarbital—but increases
aniline hydroxylase activity. In female rats, however,
induction of diabetes increases the metabolism of amin-
opyrine, hexobarbital, aniline, and biphenyls. Insulin
r aniline hydroxylase activity. In female rats, however, induction of diabetes increases the metabolism of aminopyrine, hexobarbital, aniline, and biphenyls. Insulin reverses these changes in diabetic rats but has no effect induction of diabetes increases the metabolism of amin-
opyrine, hexobarbital, aniline, and biphenyls. Insulin
reverses these changes in diabetic rats but has no effect
on biotransformation in normal rats. Studies in mice, substrate-dependent effects. verses these changes in diabetic rats but has no effective in the individual polarization in normal rats. Studies in minimals, show simidstrate-dependent effects.
Building on these indications that hormonal interacy may p on biotransformation in normal rats. Studies in mice,
including genetically diabetic animals, show similar
substrate-dependent effects.
Building on these indications that hormonal interac-
tions may play a part in the effe

including genetically diabetic animals, show sim
substrate-dependent effects.
Building on these indications that hormonal inter
tions may play a part in the effects of diabetes, Yama
and coworkers (1989b) have demonstrated substrate-dependent effects.
Building on these indications that hormonal interations may play a part in the effects of diabetes, Yamaz
and coworkers (1989b) have demonstrated a relatio
ship between increased cytochrome P45 Building on these indications that hormonal interac-
tions may play a part in the effects of diabetes, Yamazoe
and coworkers (1989b) have demonstrated a relation-
ship between increased cytochrome P450IIE and deple-
tion o tions may play a part in the effects of diabetes, Yamazoe am
and coworkers (1989b) have demonstrated a relation-
ship between increased cytochrome P450IIE and deple-
tion of growth hormone, suggesting that this may be a cy and coworkers (1989b) have demonstrated a relation
ship between increased cytochrome P450IIE and deple
tion of growth hormone, suggesting that this may be
mechanism by which diabetes alters cytochrome P45
isozyme distribut ship between increased cytochrome P450IIE and depletion of growth hormone, suggesting that this may be a mechanism by which diabetes alters cytochrome P450 isozyme distribution. Another proposal states that insulin deficie tion of growth hormone, suggesting that this may be a
mechanism by which diabetes alters cytochrome P450
isozyme distribution. Another proposal states that insu-
lin deficiency, hyperlipidemia, hyperketonemia and dis-
turb mechanism by which diabetes alters cytochrome P450
isozyme distribution. Another proposal states that insu-
lin deficiency, hyperlipidemia, hyperketonemia and dis-
turbances in levels of circulating hormones together in-
d isozyme distribution. Another proposal states that insulin deficiency, hyperlipidemia, hyperketonemia and disturbances in levels of circulating hormones together induce changes in hepatic cytochrome P450 levels (Barnett et lin deficiency, hyperlipidemia, hyperketonemia and disturbances in levels of circulating hormones together induce changes in hepatic cytochrome P450 levels (Barnett et al., 1992). However, Kato and Yamazoe (1992) point out turbances in levels of circulating hormones together in-
duce changes in hepatic cytochrome P450 levels (Barnett
et al., 1992). However, Kato and Yamazoe (1992) point out
that, although the expression of sex-specific P450s duce changes in hepatic cytochrome P450 levels (Barnet et al., 1992). However, Kato and Yamazoe (1992) point ou that, although the expression of sex-specific P450s is regulated by growth hormone, thyroid hormone, sex hor m et al., 1992). However, Kato and Yamazoe (1992) point out inst
that, although the expression of sex-specific P450s is reg-
translated by growth hormone, thyroid hormone, sex hor-
mones, and other chemicals, there are no or that, although the expression of sex-specific P450s is regulated by growth hormone, thyroid hormone, sex hormones, and other chemicals, there are no or few cyto-
chrome P450s that show the sex-related differences in specie ulated by growth hormone, thyroid hormone, sex hor-
mones, and other chemicals, there are no or few cyto-
chrome P450s that show the sex-related differences in w
species other than rats and mice. Zysset and Tlach (1986)
Pa mones, and other chemicals, there are no or few cytocould speculate that xenobiotics activated by P450IIE chrome P450s that show the sex-related differences in would exert greater toxicity, and those inactivated by species

differences may account for apparent increases in metab-
olism in diabetic rats. Clearly, further research is needed
to substantiate or refute the role of growth hormone or oro rats as indicated.
differences may account for apparent increases in metab-
olism in diabetic rats. Clearly, further research is needed
to substantiate or refute the role of growth hormone or differences may account for apparent increases in metabolism in diabetic rats. Clearly, further research is needed to substantiate or refute the role of growth hormone or other growth factors in mediating changes in phase differences may account for apparent increases in metab-
olism in diabetic rats. Clearly, further research is needed
to substantiate or refute the role of growth hormone or
other growth factors in mediating changes in phas differences may account for apparent in
olism in diabetic rats. Clearly, further r
to substantiate or refute the role of gr
other growth factors in mediating change
transformational capacity of the liver.
Some apparent eff sm in diabetic rats. Clearly, further research is needed
substantiate or refute the role of growth hormone or
her growth factors in mediating changes in phase I bio-
ansformational capacity of the liver.
Some apparent effe

to substantiate or refute the role of growth hormone or other growth factors in mediating changes in phase I bio-
transformational capacity of the liver.
Some apparent effects of diabetes in humans, i.e.,
increased levels other growth factors in mediating changes in phase I bio-
transformational capacity of the liver.
Some apparent effects of diabetes in humans, i.e.,
increased levels of P450 and altered drug metabolizing
capacity, may be c transformational capacity of the liver.
Some apparent effects of diabetes in humans, i.e.
increased levels of P450 and altered drug metabolizing
capacity, may be confounded by the presence of live-
disease such as hepatiti Some apparent effects of diabetes in humans, i.e., increased levels of P450 and altered drug metabolizing capacity, may be confounded by the presence of liver disease such as hepatitis, cirrhosis, or fatty liver (Oltmanns increased levels of P450 and altered drug metabolizing capacity, may be confounded by the presence of live disease such as hepatitis, cirrhosis, or fatty liver (Olt manns et al., 1984; Salmela et al., 1980). Daintith and c capacity, may be confounded by the presence of liver disease such as hepatitis, cirrhosis, or fatty liver (Oltmanns et al., 1984; Salmela et al., 1980). Daintith and coworkers (1976) find that the plasma half-life of antidisease such as hepatitis, cirrhosis, or fatty liver (Oltmanns et al., 1984; Salmela et al., 1980). Daintith and coworkers (1976) find that the plasma half-life of anti-
pyrine is not different from control in diet-maintai manns et al., 1984; Salmela et al., 1980). Daintith and
coworkers (1976) find that the plasma half-life of anti-
pyrine is not different from control in diet-maintained
diabetic patients or those receiving tolbutamide, but coworkers (1976) find that the plasma half-life of anti-
pyrine is not different from control in diet-maintained
diabetic patients or those receiving tolbutamide, but
administration of insulin and chlorpropamide enhanced
d pyrine is not different from control in diet-maintained diabetic patients or those receiving tolbutamide, but administration of insulin and chlorpropamide enhanced drug clearance. Diabetics from whom insulin is withheld fo administration of insulin and chlorpropamide enhanced for 48 h excrete a larger portion of phenacetin as unmetabolized drug and a smaller amount as the O-deethylated conjugate than when their insulin is restored (Da-
jani et al., 1974). In the same study, metabolism of phenyl drug clearance. Diabetics from whom insulin is withheld
for 48 h excrete a larger portion of phenacetin as unme-
tabolized drug and a smaller amount as the O-deethyl-
ated conjugate than when their insulin is restored (Daated conjugate than when their insulin is restored (Da-
jani et al., 1974). In the same study, metabolism of
phenylbutazone and tolbutamide seems unchanged. Bio-
transformation of acetophenetidin is also decreased in tabolized drug and a smaller amount as the O-deethylated conjugate than when their insulin is restored (Dajani et al., 1974). In the same study, metabolism of phenylbutazone and tolbutamide seems unchanged. Bio-transformat ated conjugate than when their insulin is restored (Dajani et al., 1974). In the same study, metabolism of phenylbutazone and tolbutamide seems unchanged. Bio-
transformation of acetophenetidin is also decreased in
alloxan iani et al., 1974). In the same study, metabolism of
phenylbutazone and tolbutamide seems unchanged. Bio-
transformation of acetophenetidin is also decreased in
alloxan-induced diabetic rabbits (Dajani and Kayyali,
1973). phenylbutazone and tolbutamide seems unchanged. Bio-
transformation of acetophenetidin is also decreased in
alloxan-induced diabetic rabbits (Dajani and Kayyali,
1973). Although Redman and Prescott (1973) report no
inducti transformation of acetophenetidin is also decreased
alloxan-induced diabetic rabbits (Dajani and Kayy,
1973). Although Redman and Prescott (1973) report
induction of microsomal enzymes by tolbutamide in
abetics, there is s alloxan-induced diabetic rabbits (Dajani and Kayyali, 1973). Although Redman and Prescott (1973) report no
induction of microsomal enzymes by tolbutamide in di-
abetics, there is some evidence of wide, perhaps geneti-
cal induction of microsomal enzymes by tolbutamide in diabetics, there is some evidence of wide, perhaps genetically controlled variation in tolbutamide metabolism among diabetic patients (Melander et al., 1978; Scott and Poff induction of microsomal enzymes by tolbuta
abetics, there is some evidence of wide, perh
cally controlled variation in tolbutamide r
among diabetic patients (Melander et al., 1
and Poffenbarger, 1979; Ueda et al., 1963).
I abetics, there is some evidence of wide, perhaps gened-
cally controlled variation in tolbutamide metabolism
among diabetic patients (Melander et al., 1978; Scott
and Poffenbarger, 1979; Ueda et al., 1963).
In summary, the

among diabetic patients (Melander et al., 1978; Scott
and Poffenbarger, 1979; Ueda et al., 1963).
In summary, the numerous alterations in microsomal
cytochrome P450-mediated reactions in diabetic hu-
mans and laboratory an and Poffenbarger, 1979; Ueda et al., 1963).
In summary, the numerous alterations in microsomal
cytochrome P450-mediated reactions in diabetic hu-
mans and laboratory animals vary widely, depending on
studied substrate, iso cytochrome P450-mediated reactions in diabetic humans and laboratory animals vary widely, depending on studied substrate, isozyme, sex, species, and severity of disease. Although the data indicate preferential expression o cytochrome P450-mediated reactions in diabetic humans and laboratory animals vary widely, depending on studied substrate, isozyme, sex, species, and severity of disease. Although the data indicate preferential expression o mans and laboratory animals vary widely, depending on
studied substrate, isozyme, sex, species, and severity of
disease. Although the data indicate preferential expres-
sion of cytochrome P450IIE in diabetic animals, more
 studied substrate, isozyme, sex, species, and severity of
disease. Although the data indicate preferential expres-
sion of cytochrome P450IIE in diabetic animals, more
specific studies of the effects of insulin-dependent a disease. Although the data indicate preferential expression of cytochrome P450IIE in diabetic animals, more specific studies of the effects of insulin-dependent and insulin-independent diabetes mellitus on hepatic biotrans specific studies of the effects of insulin-dependent and
insulin-independent diabetes mellitus on hepatic bio-
transformation in humans are needed. If cytochrome
P450IIE is increased consistently in humans, then one
could specific studies of the effects of insulin-dependent and
insulin-independent diabetes mellitus on hepatic bio-
transformation in humans are needed. If cytochrome
P45OIIE is increased consistently in humans, then one
could insulin-independent diabetes mellitus on hepatic bio-
transformation in humans are needed. If cytochrome
P450IIE is increased consistently in humans, then one
could speculate that xenobiotics activated by P450IIE
would exe transformation in numans are needed. If cytochrome
P450IIE is increased consistently in humans, then one
could speculate that xenobiotics activated by P450IIE
would exert greater toxicity, and those inactivated by
P450IIE P45011E Is increased consistently in numans, then one could speculate that xenobiotics activated by P450IIE would be ineffective: a higher dose would be required to acheive therapeutic efficacy. Future efforts need to addr

PHARMACOLOGICAL REVIEWS

B. Phase II Conjugations

DIABETES MELLITUS AND HEPATOBILIARY FUNCTION
Biotransformation also involves the enzymatically abetic liver (McLennan
mediated conjugation of a xenobiotic with an endoge-
nous water-soluble moiety such as sulfate, glutathi DIABETES MELLITUS A
B. Phase II Conjugations
Biotransformation also involves the enzymatica
mediated conjugation of a xenobiotic with an endog
nous water-soluble moiety such as sulfate, glutathion B. Phase II Conjugations
Biotransformation also involves the enzymaticall
mediated conjugation of a xenobiotic with an endoge
nous water-soluble moiety such as sulfate, glutathion
or glucuronate. The resulting conjugate is μ . Frace II Conjugations

Biotransformation also involves the enzymatically

mediated conjugation of a xenobiotic with an endoge-

nous water-soluble moiety such as sulfate, glutathione,

or glucuronate. The resulting Biotransformation also involves the enz
mediated conjugation of a xenobiotic with a
nous water-soluble moiety such as sulfate, g
or glucuronate. The resulting conjugate
readily excreted in the urine, bile, or feces.
Glucur ediated conjugation of a xenobiotic with an endogenus water-soluble moiety such as sulfate, glutathion glucuronate. The resulting conjugate is usuall adily excreted in the urine, bile, or feces.
Glucuronidation is the most

nous water-soluble moiety such as sulfate, glutathione,
or glucuronate. The resulting conjugate is usually
readily excreted in the urine, bile, or feces.
Glucuronidation is the most-studied phase II path-
way, and table 4 or glucuronate. The resulting conjugate is usua
readily excreted in the urine, bile, or feces.
Glucuronidation is the most-studied phase II pa
way, and table 4 indicates that many of the observe
ffects are substrate-specif readily excreted in the urine, bile, or feces.
Glucuronidation is the most-studied phase II path-
way, and table 4 indicates that many of the observed
effects are substrate-specific, sex-related, and species-
dependent. Di Glucuronidation is the most-studied phase II pathway, and table 4 indicates that many of the observed effects are substrate-specific, sex-related, and species-
dependent. Diabetes inhibits conjugation of testosterone (Schr way, and table 4 indicates that many of the observ
effects are substrate-specific, sex-related, and specid
dependent. Diabetes inhibits conjugation of testostero
(Schriefers et al., 1966; Watkins and Klueber, 198
Watkins a effects are substrate-specific, sex-related, and species-
dependent. Diabetes inhibits conjugation of testosterone
(Schriefers et al., 1966; Watkins and Klueber, 1988;
Watkins and Mangels, 1987; Watkins and Klueber, 1988;
 dependent. Diabetes inhibits conjugation of testostero (Schriefers et al., 1966; Watkins and Klueber, 1983), 1-napthol (Grant and Duthie, 1987; Watkins and Klueber, 1983), phenolection and Mangels, 1987; Watkins and Kluebe (Schriefers et al., 1966; Watkins and Klueber, 19
Watkins and Mangels, 1987; Watkins et al., 1988), 1-na;
thol (Grant and Duthie, 1987; Watkins and Klueber, 19
Watkins and Mangels, 1987; Watkins et al., 1988), pher
phthale thol (Grant and Duthie, 1987; Watkins and Klueber, 1988; Watkins and Mangels, 1987; Watkins et al., 1988), phenol-
phthalein (Grant and Duthie, 1987), salicylic acid (Emudi-
anughe et al., 1988), and 1-aminophenol (Mullerthol (Grant and Duthie, 1987; Watkins and Klueber, 1988;
Watkins and Mangels, 1987; Watkins et al., 1988), phenol-
phthalein (Grant and Duthie, 1987), salicylic acid (Emudi-
anughe et al., 1988), and 1-aminophenol (Muller Watkins and Mangels, 1987; Watkins et al., 1988), phenolphthale
in (Grant and Duthie, 1987), salicylic acid (Emudianughe et al., 1988), and 1-aminophenol (Muller-Oerling-
hausen et al., 1967) but enhances glucuronidation phthalein (Grant and Duthie, 1987), salicylic acid (Emudianughe et al., 1988), and 1-aminophenol (Muller-Oerling-
hausen et al., 1967) but enhances glucuronidation of
acetaminophen (Price and Jollow, 1982). Conjugation of
 anughe et al., 1988), and 1-aminophenol (Muller-Oerlin hausen et al., 1967) but enhances glucuronidation acetaminophen (Price and Jollow, 1982). Conjugation 4-nitrophenol, studied in rats (Carnovale et al., 198
Hawksworth hausen et al., 1967) but enhances glucuronidation of acetaminophen (Price and Jollow, 1982). Conjugation of 4-nitrophenol, studied in rats (Carnovale et al., 1992; Hawksworth and Morrison, 1980; Morrison and Hawksworth 198 acetaminophen (Price and Jollow, 1982). Conjugation of
4-nitrophenol, studied in rats (Carnovale et al., 1992;
Hawksworth and Morrison, 1980; Morrison and Hawk-
sworth 1982, 1984), mice (Rouer et al., 1981), rabbits (Hi-
 4-nitrophenol, studied in rats (Carnovale et al., 1992; Hawksworth and Morrison, 1980; Morrison and Hawksworth 1982, 1984), mice (Rouer et al., 1981), rabbits (Hinohara et al., 1974), and isolated rat hepatocytes (Eacho an Hawksworth and Morrison, 1980; Morrison and Haw.
sworth 1982, 1984), mice (Rouer et al., 1981), rabbits (H
nohara et al., 1974), and isolated rat hepatocytes (Each
and Weiner, 1980; Eacho et al., 1981a,b) seems to be u
aff sworth 1982, 1984), mice (Rouer et al., 1981), rabbits
nohara et al., 1974), and isolated rat hepatocytes (E
and Weiner, 1980; Eacho et al., 1981a,b) seems to be
affected in female diabetics, but either enhanced or in
ited nohara et al., 1974), and isolated rat hepatocytes (Eacho and Weiner, 1980; Eacho et al., 1981a,b) seems to be unaffected in female diabetics, but either enhanced or inhibited in males, depending on species. Estrone glucur and Weiner, 1980; Eacho et al., 1981a,b) seems to be unaffected in female diabetics, but either enhanced or inhibited in males, depending on species. Estrone glucuronidation is not affected by diabetes (Watkins and Mangel affected in female diabetics, but either enhanced or inhibited in males, depending on species. Estrone glucuronidation is not affected by diabetes (Watkins and Mangels, 1987; Watkins et al., 1988), whereas conflicting effe ited in males, depending on species. Estrone glucuronidation is not affected by diabetes (Watkins and Mangels, 1987; Watkins et al., 1988), whereas conflicting effects on the conjugation of bilirubin are seen (Rouer et al. tion is not affected by diabetes (Watkins and Mangels, 1987; Watkins et al., 1988), whereas conflicting effects on the conjugation of bilirubin are seen (Rouer et al., 1981, 1982; Tunon et al., 1991; Gonzalez and Fevery, 1 1987; Watkins et al., 1988), whereas conflicting effects on
the conjugation of bilirubin are seen (Rouer et al., 1981
1982; Tunon et al., 1991; Gonzalez and Fevery, 1992)
Morrison and Hawksworth (1982) suggest that variati the conjugation of bilirubin are seen (Rouer et al., 1981, 1982; Tunon et al., 1991; Gonzalez and Fevery, 1992).
Morrison and Hawksworth (1982) suggest that variations in glucuronidation of substrates in streptozotocin-tre 1982; Tunon et al., 1991; Gonzalez and Fevery, 1992)
Morrison and Hawksworth (1982) suggest that variations
in glucuronidation of substrates in streptozotocin-treated
male rats may be owing to an alteration of the membrane Morrison and Hawksworth (1982) suggest that variations
in glucuronidation of substrates in streptozotocin-treated
male rats may be owing to an alteration of the membrane
lipid environment, rather than a transferase modific in glucuronidation of substrates in streptozotocin-treated

male rats may be owing to an alteration of the membrane

lipid environment, rather than a transferase modification,

that might be caused by either streptozotoci male rats may be owing to an alteration of the membrane $\frac{1}{10}$
lipid environment, rather than a transferase modification, direct may that might be caused by either streptozotocin or diabetes. The
Mottino et al. (1991) lipid environment, rather than a transferase mod
that might be caused by either streptozotocin or of
Mottino et al. (1991) also postulate that lipid differ
the microenvironment level may explain variation
organs in UDP-glu at might be caused by either streptozotocin or diabetes.

ottino et al. (1991) also postulate that lipid differences at

e microenvironment level may explain variations among

gans in UDP-glucuronosyltransferase activity.

Mottino et al. (1991) also postulate that lipid differences
the microenvironment level may explain variations amon
organs in UDP-glucuronosyltransferase activity.
Diabetes has diverse effects on the glutathione
transferase the microenvironment level may explain variations am
organs in UDP-glucuronosyltransferase activity.
Diabetes has diverse effects on the glutathione
transferases as shown in table 5. The activity of glu
thione S-transferas organs in UDP-glucuronosyltransferase activity.

Diabetes has diverse effects on the glutathione S-

transferases as shown in table 5. The activity of gluta-

thione S-transferase toward 1-chloro-2,4-dinitrobenzene

is dec Diabetes has diverse effects on the glutathione S-
transferases as shown in table 5. The activity of gluta-
thione S-transferase toward 1-chloro-2,4-dinitrobenzene
is decreased in streptozotocin- and alloxan-induced dia-
b transferases as shown in table 5. The activity of gluta-
thione S-transferase toward 1-chloro-2,4-dinitrobenzene
is decreased in streptozotocin- and alloxan-induced dia-
betic rats (Aniya et al., 1989; Muller-Oerlinghausen is decreased in streptozotocin- and alloxan-induced diabetic rats (Aniya et al., 1989; Muller-Oerlinghausen et al., 1967; Thomas et al., 1989; Watkins and Mangels, 1987; Watkins et al., 1988). In contrast, transferase acti is decreased in streptozotocin- and alloxan-induced dia-
betic rats (Aniya et al., 1989; Muller-Oerlinghausen et
al., 1967; Thomas et al., 1989; Watkins and Mangels,
1987; Watkins et al., 1988). In contrast, transferase ou betic rats (Aniya et al., 1989; Muller-Oerlinghausen et col., 1967; Thomas et al., 1989; Watkins and Mangels, les
1987; Watkins et al., 1988). In contrast, transferase ou
activity is increased in streptozotocin-induced mic al., 1967; Thomas et al., 1989; Watkins and Mangels, 1987; Watkins et al., 1988). In contrast, transferase activity is increased in streptozotocin-induced mice (Agius and Gidari, 1985; Rouer et al., 1981, 1982) but is unch 1987; Watkins et al., 1988). In contrast, transferase activity is increased in streptozotocin-induced mice (Agius and Gidari, 1985; Rouer et al., 1981, 1982) but is unchanged in genetically diabetic mice (Rouer et al., 198 activity is increased in streptozotocin-induced mice conditions (Agius and Gidari, 1985; Rouer et al., 1981, 1982) but is acid unchanged in genetically diabetic mice (Rouer et al., solume) 1981, 1982) and rats (Watkins and (Agius and Gidari, 1985; Rouer et al., 1981, 1982) but is unchanged in genetically diabetic mice (Rouer et al., 1981, 1982) and rats (Watkins and Mangels, 1987). Diabetes decreases the conjugation of ethacrynic acid with unchanged in genetically diabetic mice (Rouer et al., solution)
1981, 1982) and rats (Watkins and Mangels, 1987). Diabletes decreases the conjugation of ethacrynic acid with videnduathione in streptozotocin-induced rats (W 1981, 1982) and rats (Watkins and Mangels, 1987). Diabetes decreases the conjugation of ethacrynic acid with glutathione in streptozotocin-induced rats (Watkins et al., 1988) and in genetically diabetic rats (Watkins and M abetes decreases the conjugation of ethacrynic acid with

yiding bile acids and phospholipids to the duodenum, (b)

glutathione in streptozotocin-induced rats (Watkins et partially neutralizes acidic chyme from the stomach glutathione in streptozotocin-induced rats (Watkins et al., 1988) and in genetically diabetic rats (Watkins and Mangels, 1987) and mice (Watkins and Klueber, 1988). Conjugation of sulfobromophthalein is decreased in strept al., 1988) and in genetically diabetic rats (Watkins and Mangels, 1987) and mice (Watkins and Klueber, 1988).
Conjugation of sulfobromophthalein is decreased in streptozotocin-induced rats (Watkins et al., 1988) but not i Mangels, 1987) and mice (Watkins and Klueber, 19
Conjugation of sulfobromophthalein is decreased
streptozotocin-induced rats (Watkins et al., 1988)
not in genetically diabetic rats (Watkins and Mang
1987) or mice (Watkins

EPATOBILIARY FUNCTION
transpeptidase activity is dramatically increased in di-
abetic liver (McLennan et al., 1991; Watkins and Smith, EPATOBILIARY FUNCTION
transpeptidase activity is dramatically increased in di-
abetic liver (McLennan et al., 1991; Watkins and Smith,
1993), perhaps as an attempt to conserve glutathione by EPATOBILIARY FUNCTION 7

1993), perhaps as an attempt to conserve glutathione by

activation of the hepatic γ glutamyl cycle. transpeptidase activity is dramatically increabetic liver (McLennan et al., 1991; Watkins 1993), perhaps as an attempt to conserve glue activation of the hepatic γ -glutamyl cycle.
Other conjugation reactions are also i anspeptidase activity is dramatically increased in di-
etic liver (McLennan et al., 1991; Watkins and Smith,
93), perhaps as an attempt to conserve glutathione by
tivation of the hepatic γ -glutamyl cycle.
Other conjuga

abetic liver (McLennan et al., 1991; Watkins and Smith, 1993), perhaps as an attempt to conserve glutathione by activation of the hepatic γ -glutamyl cycle.
Other conjugation reactions are also influenced by diabetes. S 1993), perhaps as an attempt to conserve glutathione by
activation of the hepatic γ -glutamyl cycle.
Other conjugation reactions are also influenced by
diabetes. Sulfation of bile acids (Kirkpatrick and Kraft,
1984), ac activation of the hepatic γ -glutamyl cycle.

Other conjugation reactions are also influenced by

diabetes. Sulfation of bile acids (Kirkpatrick and Kraft,

1984), acetaminophen (Price and Jollow, 1982), cortisol,

and Other conjugation reactions are also influenced by
diabetes. Sulfation of bile acids (Kirkpatrick and Kraft,
1984), acetaminophen (Price and Jollow, 1982), cortisol,
and dehydroepiandrosterone (Singer et al., 1981) is en-
 1984), acetaminophen (Price and Jollow, 1982), cortisol, and dehydroepiandrosterone (Singer et al., 1981) is enhanced in diabetic rodents. Diabetes causes significant alterations in estrogen metabolism (DeHertogh et al., 1 1981), which affects many biotransformation reactions. and dehydroepiandrosterone (Singer et al., 1981) is enhanced in diabetic rodents. Diabetes causes significant
alterations in estrogen metabolism (DeHertogh et al.,
1981), which affects many biotransformation reactions.
Fin hanced in diabetic rodents. Diabetes causes significal
terations in estrogen metabolism (DeHertogh et
1981), which affects many biotransformation reactio
Finally, Toda and coworkers (1987) have observed
decrease in N-acety alterations in estrogen metabolism (DeHertogh et al., 1981), which affects many biotransformation reactions. Finally, Toda and coworkers (1987) have observed a decrease in N-acetyltransferase activity in both strepto-zotoc 1981), which affects many biotransformation reactions.
Finally, Toda and coworkers (1987) have observed a
decrease in N-acetyltransferase activity in both strepto-
zotocin- and alloxan-treated male rats. In contrast, sev-
 Finally, Toda and coworkers (1987) have observed a decrease in N-acetyltransferase activity in both strepto-
zotocin- and alloxan-treated male rats. In contrast, several studies have been reviewed that indicate the rapid
a decrease in N-acetyltransferase activity in both strepto-
zotocin- and alloxan-treated male rats. In contrast, sev-
eral studies have been reviewed that indicate the rapid
acetylator phenotype is more prevalent among both zotocin- and alloxan-treated male rats. In contrast, several studies have been reviewed that indicate the rapid
acetylator phenotype is more prevalent among both type
I and type II diabetics (Evans, 1992). Apparently, the
 eral studies have been reviewed that indicate the rapid
acetylator phenotype is more prevalent among both type
I and type II diabetics (Evans, 1992). Apparently, the
rapid phenotype is twice as likely to be associated with acetylator phenotype is more prevalent among both ty
I and type II diabetics (Evans, 1992). Apparently, t
rapid phenotype is twice as likely to be associated wi
insulin-dependent diabetes, but the correlation wi
non-insuli I and type II diabetics (Evans, 1992). Apparently, the rapid phenotype is twice as likely to be associated with insulin-dependent diabetes, but the correlation with non-insulin-dependent diabetes is not as strong. Unfortun rapid phenotype is twice as likely to be associated v
insulin-dependent diabetes, but the correlation v
non-insulin-dependent diabetes is not as strong. Un
tunately, the molecular mechanism for this appar
difference in ace sulin-dependent diabetes, but the correlation with
n-insulin-dependent diabetes is not as strong. Unfor-
nately, the molecular mechanism for this apparent
fference in acetylation has not yet been examined.
Efforts to pinpo

non-insulin-dependent diabetes is not as strong. Unfor-
tunately, the molecular mechanism for this apparent
difference in acetylation has not yet been examined.
Efforts to pinpoint the mechanism of these diabetic
effects o tunately, the molecular mechanism for this apparem
difference in acetylation has not yet been examined.
Efforts to pinpoint the mechanism of these diabetive
ffects on phase II biotransformation reactions have
shown that in difference in acetylation has not yet been examined.
Efforts to pinpoint the mechanism of these diabetic
effects on phase II biotransformation reactions have
shown that in vivo levels of uridine diphosphoglucuronic
acid (H Efforts to pinpoint the mechanism of these diabetic
effects on phase II biotransformation reactions have
shown that in vivo levels of uridine diphosphoglucuronic
acid (Hinohara et al., 1974; Schriefers et al., 1966) and
gl effects on phase II biotransformation reactions have
shown that in vivo levels of uridine diphosphoglucuronic
acid (Hinohara et al., 1974; Schriefers et al., 1966) and
glutathione (Younes et al., 1980), and in vitro activi shown that in vivo levels of uridine diphosphoglucuronic
acid (Hinohara et al., 1974; Schriefers et al., 1966) and
glutathione (Younes et al., 1980), and in vitro activity of
UDP-glucose dehydrogenase (Hinohara et al., 197 acid (Hinohara et al., 1974; Schriefers et al., 1966) and glutathione (Younes et al., 1980), and in vitro activity UDP-glucose dehydrogenase (Hinohara et al., 197
Muller-Oerlinghausen et al., 1967) are all depressed invers glutathione (Younes et al., 1980), and in vitro activity of UDP-glucose dehydrogenase (Hinohara et al., 1974 Muller-Oerlinghausen et al., 1967) are all depressed in livers of diabetic animals, whereas the activities of UDP UDP-glucose dehydrogenase (Hinohara et al., 197
Muller-Oerlinghausen et al., 1967) are all depressed
livers of diabetic animals, whereas the activities of UE
glucuronic acid pyrophosphatase and D-glucuronic ac
1-phosphatas Muller-Oerlinghausen et al., 1967) are all depressed in
livers of diabetic animals, whereas the activities of UDP-
glucuronic acid pyrophosphatase and D-glucuronic acid-
1-phosphatase (Hinohara et al., 1974) and the concen livers of diabetic animals, whereas the activities of UDP-
glucuronic acid pyrophosphatase and D-glucuronic acid-
1-phosphatase (Hinohara et al., 1974) and the concen-
tration of the oxidized form of nicotinamide adenine
d glucuronic acid pyrophosphatase and D-glucuronic acid-
1-phosphatase (Hinohara et al., 1974) and the concentration of the oxidized form of nicotinamide adenine
dinucleotide (Badawy and Evans, 1977) are enhanced.
These chan 1-phosphatase (Hinohara et al., 1974) and the tration of the oxidized form of nicotinamid dinucleotide (Badawy and Evans, 1977) are These changes in the conjugation pathway begin to explain the diverse effects observed. These changes in the conjugation pathway may only
begin to explain the diverse effects observed.
VI. Diabetes-induced Changes in Bile Production
A General Considerations Regarding Bile Formation *A. General Considerations Regarding Bile Formation***
** *A. General Considerations Regarding Bile Formation***

A. General Considerations Regarding Bile Formation

Bile. the exocrine secretion of the liver. provides a**

A. General Considerations Regarding Bile Formation
Bile, the exocrine secretion of the liver, provides a
route of excretion for such endogenous and exogenous VI. Diabetes-induced Changes in Bile Production
A. General Considerations Regarding Bile Formation
Bile, the exocrine secretion of the liver, provides a
route of excretion for such endogenous and exogenous
compounds as bil A. General Considerations Regarding Bile Formation
Bile, the exocrine secretion of the liver, provides a
route of excretion for such endogenous and exogenous
compounds as bile acids, bilirubin, phospholipids, cho-
lesterol A. General Considerations negaraing Bile Formation
Bile, the exocrine secretion of the liver, provides
route of excretion for such endogenous and exogenou
compounds as bile acids, bilirubin, phospholipids, ch
lesterol, wat Bile, the exocrine secretion of the liver, provides a route of excretion for such endogenous and exogenous compounds as bile acids, bilirubin, phospholipids, cholesterol, water- and lipid-soluble drugs and toxins. Aque-
ou route of excretion for such endogenous and exogenous
compounds as bile acids, bilirubin, phospholipids, cho-
lesterol, water- and lipid-soluble drugs and toxins. Aque-
ous bile is suitable for the excretion of water-solubl compounds as bile acids, bilirubin, phospholipids, cho-
lesterol, water- and lipid-soluble drugs and toxins. Aque-
ous bile is suitable for the excretion of water-soluble
compounds and their metabolites. Micelle forming bi lesterol, water- and lipid-soluble drugs and toxins. Aque-
ous bile is suitable for the excretion of water-soluble
compounds and their metabolites. Micelle forming bile
acids above their critical micellar concentration al ous bile is suitable for the excretion of water-soluble
compounds and their metabolites. Micelle forming bile
acids above their critical micellar concentration allow
solubilization of lipid-soluble compounds in bile. Bile
 compounds and their metabolites. Micelle forming bile
acids above their critical micellar concentration allow
solubilization of lipid-soluble compounds in bile. Bile
also (*a*) assists in fat digestion and absorption by pr acids above their critical micellar concentration allow
solubilization of lipid-soluble compounds in bile. Bile
also (a) assists in fat digestion and absorption by pro-
viding bile acids and phospholipids to the duodenum solubilization of lipid-soluble compounds in bile. B
also (*a*) assists in fat digestion and absorption by p
viding bile acids and phospholipids to the duodenum,
partially neutralizes acidic chyme from the stoma
and (*c*) also (a) assists in fat digestividing bile acids and phosphopartially neutralizes acidic α and (c) plays an immunologic noglobulin A to the intestine. Osmosis is considered to b ding bile acids and phospholipids to the duodenum, (b)
rtially neutralizes acidic chyme from the stomach,
 $d(c)$ plays an immunological role by delivering immu-
globulin A to the intestine.
Osmosis is considered to be the

partially neutralizes acidic chyme from the stomad and (c) plays an immunological role by delivering imm
noglobulin A to the intestine.
Osmosis is considered to be the major mechanism
water movement during bile formation, and (c) plays an immunological role by delivering imm
noglobulin A to the intestine.
Osmosis is considered to be the major mechanism
water movement during bile formation, although hyd
static pressure may affect bile form moglobulin A to the intestine.

Osmosis is considered to be the major mechanism of

water movement during bile formation, although hydro-

static pressure may affect bile formation under experi-

mental and pathological co

spet

 $\overline{0}$

PHARMACOLOGICAL REVIEWS

Cl) ., ABLE 3
5 unless oth
cated to inc **Cl)**

*, insulin reverses effects; *****, insulin has no effect

DIABETES MELLITIJS AND HEPATOBILIARY FUNCTION ⁹ EURE DIABETES MELLITUS AND HEPATOBILIARY FUNCTION
ent is provided by organic and inorganic solutes secreted
into bile. The interrelationships among different trans-DIABETES MELLITUS AND HEPATOBILIARY FUNCTION

ent is provided by organic and inorganic solutes secreted

into bile. The interrelationships among different trans-

port processes, metabolic events, and bile formation are DIABETES MELLITUS AND HEPATOBILIARY FUNCTION

ent is provided by organic and inorganic solutes secreted

into bile. The interrelationships among different trans-

port processes, metabolic events, and bile formation are

i port processes, metabolic events, and bile formation are
incompletely understood. Details of earlier studies can
be found in several comprehensive reviews (Anwer, ent is provided by organic and inorganic solutes secreted
into bile. The interrelationships among different trans-
port processes, metabolic events, and bile formation are
incompletely understood. Details of earlier studie into bile. The interrelationships among different transport processes, metabolic events, and bile formation are

and the completely understood. Details of earlier studies can

ab found in several comprehensive reviews (Anw **Fract Processes, metabolic events, and bile formation are

i** when the most processes, metabolic events, and bile formation are

and the found in several comprehensive reviews (Anwer,

1991; Arias et al., 1993; Erlinger, **be found in several comprehensive reviews (Anwer, 1991; Arias et al., 1993; Erlinger, 1988; Klaassen and Watkins, 1984; Moseley and Boyer, 1985; Suchy, 1989).

...** secreted into the canalicular space that is surrounded

 $\frac{36}{25}$
 $\frac{36}{25}$
 Solution of tight junctions also serves as morphological

Solution of tight junctions also serves as morphological

Solution of tight junctions also serves as morphological

Solution of tight junctions also serves as morph **Figure 1.1 ...** $\begin{array}{c}\n\overline{1} & \overline{1} & \overline{1} \\
\overline{2} & \overline{2} & \overline{2} \\
\overline{3} & \overline{4} & \overline{2} \\
\overline{4} & \overline{4} & \overline{2} \\
\overline{5} & \overline{6} & \overline{2} \\
\overline{6} & \overline{6} & \overline{6} \\
\overline{7} & \overline{8} & \overline{2} \\
\overline{8} & \overline{9} & \overline{1} \\
\overline{1} & \overline{1} & \overline{1} \\
\overline{1} & \overline{1} & \overline{1} \\
\over$ **Example 1988**
 Example 1989
 Example 1989

(canalicular) and basolateral domains (sinusoidal and lateral plasma membranes **CI**)
 CI) and functional demarcation points between apical

(canalicular) and basolateral domains (sinusoidal and

lateral plasma membranes) of hepatocytes. These two

membrane domains differ in their lipid composition

(Meier et al (canalicular) and basolateral domains (sinusoidal and lateral plasma membranes) of hepatocytes. These two membrane domains differ in their lipid composition (Meier et al., 1984), and these differences are maintained by tig - proteins (Gumbiner, 1987). Tight junctions along with a) desmonstrated by tight junctions that are believed to provide

and by tight junctions that are believed to provide

effective barriers against lateral movement of lipids and

gap-simulations at the lateral

domain are i a) **. .** domain are important diffusional barriers between the desmosomes and gap-junctions present at the lateral
domain are important diffusional barriers between the
interstitium and bile. Tight junctions, because of their
permselectivity to cations (Bradley and Herz, 1978), proand the set of a set of $\frac{4}{3}$
 $\frac{4}{3}$
 and the street of their contents of the contents of the contents of the contents of the contents, particularly organic anions. In addition, and the contents, particularly organic anions. In addition, and the contents, part $\frac{1}{2}$
 $\frac{1}{2}$
 EXECUTE IN SEX SECUTE IN SEXURE FOR SEXURE IN SEXURE FOR SEXURE THE I A TREATE TO BE THE CONFERENCE OF A TABLE THE CONFERENCE SUBARDING SU Franchise Section of the Section of Section 1987;

The Section of Section 1987;

The Section of Section 1988; Phillips et

The Section of Section 1988; Phillips et

The Section of Section of electrolytes and water.

The Se

al., 1986). Bile formed at the canaliculi is modified down-
stream in the bile ducts (ductular bile) by reabsorption
and/or secretion of electrolytes and water.
Active solute transport into canaliculi is primarily
responsi I-a) $\sum_{k=1}^{\infty}$ and/or secretion of electrolytes and water.

Active solute transport into canaliculi is primarily

Active solute transport into canaliculi is primarily

Reservation (Anwer, 1991;

Arias et al., 1993; Me 1984). Of all the compounds in bile, bile acids are the most concentrated ones. It is now generally agreed that Active solute transport into canaliculi is primarily

responsible for canalicular bile formation (Anwer, 1991;

Arias et al., 1993; Meier, 1991; Klaassen and Watkins,

20 high concentrated ones. It is now generally agreed **.** . **,- .-** major driving force for water movement during bile for- **1984**). Of all the compounds in bile, bile acids are the
 $\frac{36}{21}$ $\frac{36$ the conventionally defined as bile acid-dependent is conventionally defined as bile acid-dependent of the conventionally defined as bile acid-dependent of the conventionally defined as bile acid-dependent of the convention **ES a** consider the major driving force for water movement during bile for-
 ES a dentile flow associated with bile acid
 ES a dentile flow. However, even in the virtual absence of
 $\frac{1}{2}$ a dentile flow. However, e a)
 a) C \overline{a} , \overline{a} , **EXECUTE THE CONSULTER TRANSPARENT CONSULTER SERVICE IN A SURFACE OF** $\frac{1}{2}$ **and** $\frac{1}{2}$ **\frac{1}{2} . .** E- E **. .** bile flow versus bile acid excretion plot. The slope of the $\frac{1}{2}$ and $\frac{1}{2}$ a $\begin{matrix}\n\text{a} & \text{b} & \text{c} & \text{d} & \text{d} & \text{c} & \text{d} & \text{e & \text{d}} \\
\text{c} & \text{d} & \text{e} & \text{e} & \text{f} & \text{f} & \text{f} & \text{f} & \text{f} \\
\text{d} & \text{e} & \text{f} & \text{f} & \text{f} & \text{f} & \text{f} \\
\text{e} & \text{f} & \text{f} & \text{f} & \text{f} & \text{f} \\
\text{f} & \text{f} & \text{f} & \text{f} & \text{f}$ regression line represents bile acid-dependent flow, and
is also a measure of the choleretic effect of bile acids (i.e.,
the increment in bile flow per increment in bile acid
excretion). In addition to bile acids, hormone **A)** $\frac{3}{20}$ $\frac{3}{2$

 $\frac{1}{2}$ $\frac{1}{2}$ where the senecation of bile acid-independent bile flow (Er-

bilger, 1988; Klaassen and Watkins, 1984; Moseley and

Boyer, 1985; Boyer et al., 1992). Unequivocal evidence in

digital active still lacking, and active

digi

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Downloaded from pharmrev aspetjournals org at Thammasart University on December 8, 2012

10 WATKINS AND SANDERS

TABLE 4 *Effects of diabetes on hepatic glucuronidation reactions. All animals are rats unless otherwise noted. Animals are genetically diabetic or* **treated with strength warkling and SANDERS**
thecuronidation reactions. All animals are rats unless otherwise noted. Animal
treated with streptozotocin (STZ) or alloxan as indicated to induce diabetes
Increase

PHARMACOLOGICAL REVIEWS

provide an osmotic gradient, inasmuch as tight junctions
are readily permeable to these ions (Graf, 1983). Hepatransport of these inorganic ions may not be able to provide an osmotic gradient, inasmuch as tight junctions are readily permeable to these ions (Graf, 1983). Hepa-tocytes have a Na^+/H^+ exchanger (Arias and Forgac, transport of these inorganic ions may not be able to
provide an osmotic gradient, inasmuch as tight junctions
are readily permeable to these ions (Graf, 1983). Hepa-
tocytes have a Na^+/H^+ exchanger (Arias and Forgac,
19 transport of these inorganic ions may not be able
provide an osmotic gradient, inasmuch as tight junctia
are readily permeable to these ions (Graf, 1983). He
tocytes have a Na⁺/H⁺ exchanger (Arias and Forg
1984; Mosel provide an osmotic gradient, inasmuch as tight junctions
are readily permeable to these ions (Graf, 1983). Hepa
tocytes have a Na⁺/H⁺ exchanger (Arias and Forgac
1984; Moseley et al., 1986) and a Na⁺-HCO₃⁻ cotra are readily permeable to these ions (Graf, 1983). Hepa-
tocytes have a Na⁺/H⁺ exchanger (Arias and Forgac,
1984; Moseley et al., 1986) and a Na⁺-HCO₃⁻ cotrans-
porter (Renner et al., 1989) on the sinusoidal memb tocytes have a Na⁺/H⁺ exchanger (Arias and Forgac, 1984; Moseley et al., 1986) and a Na⁺-HCO₃⁻ cotransporter (Renner et al., 1989) on the sinusoidal membrane, and a Cl⁻/HCO₃⁻(OH⁻) exchanger on the canali 1984; Moseley et al., 1986) and a Na⁺-HCO₃⁻ cotrans-
porter (Renner et al., 1989) on the sinusoidal membrane, or
and a Cl⁻/HCO₃⁻(OH⁻) exchanger on the canalicular in
membrane (Meier et al., 1985). These ion porter (Renner et al., 1989) on the sinusoidal membrane,
and a Cl⁻/HCO₃⁻(OH⁻) exchanger on the canalicular
membrane (Meier et al., 1985). These ion transport
mechanisms, by regulating intracellular events, may afmembrane (Meier et al., 1985). These ion transport
mechanisms, by regulating intracellular events, may af-
fect biliary excretion of other osmotically active solutes
and thereby bile acid-independent flow. Biliary excre-
t membrane (meier et al., 1985). Inese ion transport
mechanisms, by regulating intracellular events, may af-
fect biliary excretion of other osmotically active solutes
and thereby bile acid-independent flow. Biliary excre-
t fect biliary excretion of other osmotically active solutes
and thereby bile acid-independent flow. Biliary excre-
tion of inorganic ions, in that case, may be mainly owing
to solvent drag and diffusion.
A number of organic

and thereby bile acid-independent flow. Biliary excretion of inorganic ions, in that case, may be mainly owing to solvent drag and diffusion.
A number of organic solutes (bilirubin, glutathione, amino acids) are concentrat and thereby bile acid-independent flow. Biliary excretion of inorganic ions, in that case, may be mainly owing
to solvent drag and diffusion.
A number of organic solutes (bilirubin, glutathione,
amino acids) are concentra to solvent drag and diffusion.

A number of organic solutes (bilirubin, glutathione,

amino acids) are concentrated in bile in addition to bile

acids and could provide the osmotic gradient for bile

formation. With the e to solvent drag and diffusion.

A number of organic solutes (bilirubin, glutathione,

amino acids) are concentrated in bile in addition to bile

formation. With the exception of glutathione, the roles of

other organic so A number of organic solutes (bilirubin, glutathione,
amino acids) are concentrated in bile in addition to bile
acids and could provide the osmotic gradient for bile
formation. With the exception of glutathione, the roles amino acids) are concentrated in bile in addition to bile
acids and could provide the osmotic gradient for bile
formation. With the exception of glutathione, the roles of
other organic solutes in bile acid-independent bile acids and could provide the osmotic gradient for bile
formation. With the exception of glutathione, the roles of
other organic solutes in bile acid-independent bile flow
are unclear. There is growing evidence that biliary formation. With the exception of glutathione, the roles of other organic solutes in bile acid-independent bile flow are unclear. There is growing evidence that biliary excretion of glutathione and its conjugates may be inv other organic solutes in bile acid-independent bile flow
are unclear. There is growing evidence that biliary ex-
cretion of glutathione and its conjugates may be in-
volved in bile acid-independent flow. Agents that in-
cr are unclear. There is growing evidence that biliary excretion of glutathione and its conjugates may be in-
volved in bile acid-independent flow. Agents that in-
crease or decrease glutathione excretion have similar me-
eff

Truong, 1989; Brigelius and Anwer, 1981; Hoener et al., Truong, 1989; Brigelius and Anwer, 1981; Hoener et al.,
1989). As in the case of bile acids, canalicular bile flow is
linearly related to biliary excretion of glutathione and is Truong, 1989; Brigelius and Anwer, 1981; Hoener et al.,
1989). As in the case of bile acids, canalicular bile flow is
linearly related to biliary excretion of glutathione and is
not abolished when glutathione excretion is Truong, 1989; Brigelius and Anwer, 1981; Hoener et
1989). As in the case of bile acids, canalicular bile flow
linearly related to biliary excretion of glutathione and
not abolished when glutathione excretion is extra
lated Truong, 1989; Brigelius and Anwer, 1981; Hoener et al., 1989). As in the case of bile acids, canalicular bile flow is linearly related to biliary excretion of glutathione and is not abolished when glutathione excretion is 1989). As in the case of bile acids, canalicular bile flow is linearly related to biliary excretion of glutathione and into abolished when glutathione excretion is extrapolated to zero (Ballatori and Truong, 1989). Thus, s linearly related to biliary excretion of glutathione and into abolished when glutathione excretion is extrapolated to zero (Ballatori and Truong, 1989). Thus, solute other than glutathione may also be involved in bile acid not abolished when glutathione excretion is extrapo-
lated to zero (Ballatori and Truong, 1989). Thus, solutes
other than glutathione may also be involved in bile acid-
independent bile flow. It is conceivable that the com lated to zero (Ballatori and Truong, 1989). Thus, solumble of the photon of the acid-independent bile flow. It is conceivable that the coordinated osmotic activity of a number of organic solumn excreted into bile contribut other than glutathione may also be involved in bile acid-
independent bile flow. It is conceivable that the com-
bined osmotic activity of a number of organic solutes
excreted into bile contributes to bile acid-independen independent bile flow. It is conceivable that the com-
bined osmotic activity of a number of organic solutes
excreted into bile contributes to bile acid-independent
flow. The contribution of each solute, however, may be
ap bined osmotic activity of a number of organic solute
excreted into bile contributes to bile acid-independen
flow. The contribution of each solute, however, may b
apparent only under experimental conditions designe
to enhan creted into bile contributes to bile acid-independent
w. The contribution of each solute, however, may be
parent only under experimental conditions designed
enhance biliary excretion of that particular solute.
A large numb

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

flow. The contribution of each solute, however, may be
apparent only under experimental conditions designed
to enhance biliary excretion of that particular solute.
A large number of exogenous organic compounds that
are con are concentrated in bile also increase canalicular bile
formation (Klaassen and Watkins, 1984). These com-
pounds can induce choleresis by direct osmotic effects, to enhance biliary excretion of that particular solute.
A large number of exogenous organic compounds that
are concentrated in bile also increase canalicular bile
formation (Klaassen and Watkins, 1984). These com-
pounds A large number of exogenous organic compounds that
are concentrated in bile also increase canalicular bile
formation (Klaassen and Watkins, 1984). These com-
pounds can induce choleresis by direct osmotic effects,
by incr are concentrated in bile also increase canalicular bile
formation (Klaassen and Watkins, 1984). These com-
pounds can induce choleresis by direct osmotic effects,
by increasing biliary HCO_3^- excretion, or by inhibiting
 formation (Klaassen and Watkins, 1984). These compounds can induce choleresis by direct osmotic effect
by increasing biliary HCO_3^- excretion, or by inhibitin
reabsorption of electrolytes and fluid from canalicu
(Anwer, pounds can induce choleresis by direct osmotic effects,
by increasing biliary HCO_3^- excretion, or by inhibiting
reabsorption of electrolytes and fluid from canaliculi
(Anwer, 1985; Anwer and Hegner, 1982, 1983a,b). Howmechanism.

DIABETES MELLITUS AND HEPATOBILIARY FUNCTION
TABLE 5
*Effects of diabetes on hepatic glutathione S-transferase. All animals used are rats unless otherwise noted; animals are genetically diabetic
<i>or treated with streptozot*

synthesis, regulate enzyme function (either directly or changes in membrane potential (Wondergem, 1983). Boindirectly via glucose or some other metabolic agent), lus intravenous injections of insulin into normal dogs and c indirectly via glucose or some other metabolic agent), lus intravenous injections of insulin into normal dogs
and control carbohydrate metabolism (Porte and Halter, (Jones and Meyers, 1979) and diabetic rats (Villanueva
19 and control carbohydrate metabolism (Porte and Halter, (Jones and Meyers, 1979) and diabetic rats (Villanueva
1981). Moreover, insulin infusion produces a significant et al., 1990b) stimulate bile acid excretion and reduce 1981). Moreover, insulin infusion produces a significant et al., 1990b) stimulate bile acid excretion and reduce
choleresis (increased bile flow rate) in normal dogs (Aus-
tin et al., 1977; Garberoglio et al., 1983; Jones choleresis (increased bile flow rate) in normal dogs (Aus-
tin et al., 1977; Garberoglio et al., 1983; Jones, 1976; influence hepatic uptake and biliary excretion is poorly
Jones and Meyers, 1979; Snow and Jones, 1978) or in et al., 1977; Garberoglio et al., 1983; Jones, 1976; influence hepatic uptake and biliary excretion is poor
Jones and Meyers, 1979; Snow and Jones, 1978) or rats understood.
(Thomsen and Larsen, 1982a,b), apparently by

Pichloronitrobenzene
B. Insulin- and Diabetes-induced Alterations in Bile al., 1984). This effect may be secondary to stimulation of *Production and Flow* sinusoidal Na⁺-K⁺-ATPase (Thomsen, 1983; Thomsen Insulin a Insulin- and Diabetes-induced Alterations in Bile al., 1984). This effect may be secondary to stimulation of

coduction and Flow sinusoidal Na⁺-K⁺-ATPase (Thomsen, 1983; Thomsen

Insulin acts in numerous ways to promot B. Insulin- and Diabetes-induced Alterations in Bile al., 1984). This effect may be secondary to stimulation of

Production and Flow sinusoidal Na⁺-K⁺-ATPase (Thomsen, 1983; Thomsen

Insulin acts in numerous ways to p Froduction and Flow sinusoidal Na⁺-K⁺-ATPase (Thomsen, 1983; Thomsen
Insulin acts in numerous ways to promote protein and Larsen, 1982a; Gelehrter et al., 1984) as well as
synthesis, regulate enzyme function (either d and control carbohydrate metabolism (Porte and Halter, and Meyers, 1979) and diabetic rats (Villanueva

and control carbohydrate metabolism (Porte and Halter, discussions of insulin into normal dogs

and control carbohydra Insulin acts in numerous ways to promote protein
synthesis, regulate enzyme function (either directly or
indirectly via glucose or some other metabolic agent),
and control carbohydrate metabolism (Porte and Halter, (Jones

 $\begin{array}{ll}\n\text{e} & \text{b} & \text{b} \\
\text{e} & \text{b} & \text{b} \\
\text{f} & \text{d} & \text{d} \\
\text{f} & \text{f} & \text{d} \\
\text{g} & \text{f} & \text{d} \\
\text{g} & \text{f} & \text{d} \\
\text{h} & \text{h} & \text{h} \\
\text{h} & \text{h} & \text$

Effect of time after diabetogenesis on bile flow (Jones, R. S., et betes are indicated in table 6. Flow is depressed im
Effect of time after diabetogenesis on bile flow (μ */min/g liver). All animals used are male Wist*

TABLE 6 Effect of time after diabetogenesis on bile flow ($\mu/min/g$ liver). All animals used are male Wistar or Sprague-Dawley (SD) rats as indicated										
Rats	STZ/alx	Time	Anesthetic	Control	Diabetic	% Control	Source			
Wistar	STZ	1 day		0.9	0.45	50	Andrews and Griffiths, 1984			
Wistar	STZ	1 day	pentobarbital	$2.5\,$	1.6	64	Carnovale et al., 1987			
Wistar	STZ	1 day	pentobarbital	2.3	1.6	64	Carnovale et al., 1986			
Wistar	STZ	1 day	pentobarbital	2.38	1.21	51	Carnovale and Rodriguez-Garay, 1984			
		7 day			1.38	58				
		15 day			1.72	72				
Wistar	STZ	1 day	pentobarbital	1.9	1.2	63	Marin et al., 1988			
		3 day			1.35	71				
		6 day			1.4	74				
		20 day			1.6	84				
Wistar	STZ	4 day	urethane	1.72	1.15	67	Siegers et al., 1979			
SD	STZ	21 day	ether	0.87	1.97	236	Kirkpatrick and Kraft, 1984			
SD	STZ	30 day	urethane	1.35	1.60	119	Watkins and Dykstra, 1987			
SD	STZ	30 day	urethane	1.63	1.60	98	Watkins and Noda, 1986			
SD	STZ	7 day	urethane	1.77	1.21	68	Watkins and Sanders (unpubl.)			
		14 day			1.28	72				
		30 day			1.87	106				
Wistar	alloxan	30 day	pentobarbital	1.80	1.75	97	Badawy and Evans, 1977			

12 waTKINS /
diately after diabetogen administration but seems nor-
mal 4 weeks later. It is likely, however, that the waTKINS AND S
diately after diabetogen administration but seems nor-
mal 4 weeks later. It is likely, however, that the bil
diabetogen itself is toxic to the liver, causing decreases fac WATKINS AN
diately after diabetogen administration but seems nor-
mal 4 weeks later. It is likely, however, that the
diabetogen itself is toxic to the liver, causing decreases
in bile flow and in biliary excretion of sever The flately after diabetogen administration but seems normal 4 weeks later. It is likely, however, that the diabetogen itself is toxic to the liver, causing decreases in bile flow and in biliary excretion of several compou diately after diabetogen administration but seems n
mal 4 weeks later. It is likely, however, that t
diabetogen itself is toxic to the liver, causing decreas
in bile flow and in biliary excretion of several compoun
for the mal 4 weeks later. It is likely, however, that the diabetogen itself is toxic to the liver, causing decreases in bile flow and in biliary excretion of several compounds for the first 15 to 20 days after administration (Car diabetogen itself is toxic to the liver, causing decreases fact
in bile flow and in biliary excretion of several compounds class
for the first 15 to 20 days after administration (Carno-
vale and Rodriguez-Garay, 1984; Carn in bile flow and in biliary excretion of several compounds
for the first 15 to 20 days after administration (Carno-
vale and Rodriguez-Garay, 1984; Carnovale et al., 1987,
1991; Chawalit et al., 1982). Both biliary excreti for the first 15 to 20 days after administration (Carnovale and Rodriguez-Garay, 1984; Carnovale et al., 1987, 1991; Chawalit et al., 1982). Both biliary excretion and bile flow return to normal levels by 28 to 30 days aft vale and Rodriguez-Garay, 1984; Carnovale et al., 1987, st
1991; Chawalit et al., 1982). Both biliary excretion and in
bile flow return to normal levels by 28 to 30 days after
streptozotocin or alloxan (Uchida et al., 1979 1991; Chawalit et al., 1982). Both biliary excretion a
bile flow return to normal levels by 28 to 30 days aft
streptozotocin or alloxan (Uchida et al., 1979; Watki
and Dykstra, 1987; Watkins and Noda, 1986), in spite
the c bile flow return to normal levels by 28 to 30 days a
streptozotocin or alloxan (Uchida et al., 1979; Watk
and Dykstra, 1987; Watkins and Noda, 1986), in spit
the continued presence of hypoinsulinemia and hy
glycemia. In ra streptozotocin or alloxan (Uchida et al., 1979; Watkins cause and Dykstra, 1987; Watkins and Noda, 1986), in spite of the continued presence of hypoinsulinemia and hyper-
glycemia. In rats treated with nicotinamide, strep the continued presence of hypoinsulinemia and hyper-
glycemia. In rats treated with nicotinamide, streptozo-
tocin loses its diabetogenic properties but continues to
decrease bile flow and bile acid output (Carnovale et al 1987).

tocin loses its diabetogenic properties but continues to decrease bile flow and bile acid output (Carnovale et al., 1987).
1987). Some workers report bile flow in terms of flow per kg
body weight, whereas others report flo decrease bile flow and bile acid output (Carnovale et al., $2x$, 1987).

Some workers report bile flow in terms of flow per kg potentially different interpretations of the pure same data. Because of liver hypertrophy, liv 1987).
Some workers report bile flow in terms of flow per kg
body weight, whereas others report flow per gram liver,
resulting in potentially different interpretations of the
same data. Because of liver hypertrophy, liver Some workers report bile flow in terms of flow per kg poody weight, whereas others report flow per gram liver, the resulting in potentially different interpretations of the pusame data. Because of liver hypertrophy, liver body weight, whereas others report flow per gram li
resulting in potentially different interpretations of
same data. Because of liver hypertrophy, liver weig
body weight ratios in diabetic rats may be more t
20% higher tha resulting in potentially different interpretations of the pussume data. Because of liver hypertrophy, liver weight/ 199
body weight ratios in diabetic rats may be more than 199
20% higher than in weight-matched controls. S same data. Because of liver hypertrophy, liver weight body weight ratios in diabetic rats may be more the 20% higher than in weight-matched controls. Streptoz tocin- and alloxan-induced diabetic animals fail to ga weight a body weight ratios in diabetic rats may be more than
20% higher than in weight-matched controls. Streptozo-
tocin- and alloxan-induced diabetic animals fail to gain
weight as fast as normals, leading to even larger differtocin- and alloxan-induced diabetic animals fail to gain
weight as fast as normals, leading to even larger differ-
ences in the liver weight/body weight ratios of age-
matched pairs. Bile flow rates 7, 14, and 30 days afte weight as fast as normals, leading to even larger differences in the liver weight/body weight ratios of a matched pairs. Bile flow rates 7, 14, and 30 days aftereptozotocin, when calculated in nmol/min/gram liv were 68%, 7 ences in the liver weight/body weight ratios of age-
matched pairs. Bile flow rates 7, 14, and 30 days after
streptozotocin, when calculated in nmol/min/gram liver,
were 68%, 72%, and 106% of normal bile flow, respec-
tive matched pairs. Bile flow rates 7, 14, and 30 days after sufferent extreptozotocin, when calculated in nmol/min/gram liver, in were 68%, 72%, and 106% of normal bile flow, respectively (Watkins and Sanders, 1991). However, streptozotocin, when calculated in nmol/min/gram liver, in the were 68%, 72%, and 106% of normal bile flow, respectively (Watkins and Sanders, 1991). However, when cal-
tively (Watkins and Sanders, 1991). However, when cal were 68%, 72%, and 106% of normal bile flow, respectively (Watkins and Sanders, 1991). However, when calculated in nmol/min/kg body weight, these figures were can calculated in nmol/min/kg body weight, these figures were tively (Watkins and Sanders, 1991). H
culated in nmol/min/kg body weight, 1
85%, 94%, and 130% of normal bile
support the theory that long-term d
little adverse effect on bile formation.
Decreased bile flow in diabetic rat lated in nmol/min/kg body weight, these figures were ca

%, 94%, and 130% of normal bile flow, seeming to after the theory that long-term diabetes may have entitle adverse effect on bile formation.

Decreased bile flow in

support the theory that long-term diabetes may have
little adverse effect on bile formation.
Decreased bile flow in diabetic rats may be a result of
the cholestatic factors hyperglycemia and hypoinsuline-
mia rather than w Decreased bile flow in diabetic rats may be a result of
the cholestatic factors hyperglycemia and hypoinsuline-
mia rather than water or electrolyte imbalance or gen-
eralized damage to the hepatic secretory system (Ackerlittle adverse effect on bile formation.
Decreased bile flow in diabetic rats may be a result
the cholestatic factors hyperglycemia and hypoinsulin
mia rather than water or electrolyte imbalance or ge
eralized damage to th Decreased bile flow in diabetic rats may be a result of fite cholestatic factors hyperglycemia and hypoinsuline-
mia rather than water or electrolyte imbalance or gen-
eralized damage to the hepatic secretory system (Acker the cholestatic factors hyperglycemia and hypoinsuline-
mia rather than water or electrolyte imbalance or gen-
eralized damage to the hepatic secretory system (Acker-
man and Leibman, 1977; Marin et al., 1988). Induction
o mia rather than water or electrolyte imbalance or generalized damage to the hepatic secretory system (Ackerman and Leibman, 1977; Marin et al., 1988). Induction of hyperglycemia by infusion of glucose produces cholestasis eralized damage to the hepatic secretory system (Ackerman and Leibman, 1977; Marin et al., 1988). Induction
of hyperglycemia by infusion of glucose produces cho-
lestasis (Guzelian and Boyer, 1974; Zahavi et al., 1985),
ap man and Leibman, 1977; Marin et al., 1988). Induction evolution of hyperglycemia by infusion of glucose produces cholest
asis (Guzelian and Boyer, 1974; Zahavi et al., 1985), tail apparently at the canalicular level (Muno of hyperglycemia by infusion of glucose produces cho-
lestasis (Guzelian and Boyer, 1974; Zahavi et al., 1985), tail
apparently at the canalicular level (Munoz et al., 1986). has
Glucose infusion also leads to decreased s lestasis (Guzelian and Boyer, 1974; Zahavi et al., 1985), tain
apparently at the canalicular level (Munoz et al., 1986). have
Glucose infusion also leads to decreased secretion of bile
crisis and electrolytes, such as $Na^$ apparently at the canalicular level (Munoz et al., 1986).
Glucose infusion also leads to decreased secretion of bile
acids and electrolytes, such as Na^+ , K^+ , Cl^- , and
 HCO_3^- , increased hepatic levels of UDP-glucose Glucose infusion also leads to decreased secretion of bile cacids and electrolytes, such as Na^+ , K^+ , Cl^- , and sl
HCO₃⁻, increased hepatic levels of UDP-glucose and tactivity of bilirubin glucuronyltransferase, a acids and electrolytes, such as Na^+ , K^+ , Cl^- , and HCO_3^- , increased hepatic levels of UDP-glucose and activity of bilirubin glucuronyltransferase, and in creased conjugation and biliary excretion of bilirubin (Muno HCO_3^- , increased hepatic levels of UDP-glucose and tactivity of bilirubin glucuronyltransferase, and increased conjugation and biliary excretion of bilirubin comparate (Munoz et al., 1986, 1987). In addition, Olson and activity of bilirubin glucuronyltransferase, and increased conjugation and biliary excretion of bilirubin con
(Munoz et al., 1986, 1987). In addition, Olson and Fuji-
moto (1980) demonstrate a highly selective glucose izz
 creased conjugation and biliary excretion of bilirubin
(Munoz et al., 1986, 1987). In addition, Olson and Fuji-
poimoto (1980) demonstrate a highly selective glucose izs
transporter in the biliary tree that returns glucose (Munoz et al., 1986, 1987). In addition, Olson and Fuji-
moto (1980) demonstrate a highly selective glucose
transporter in the biliary tree that returns glucose to the
liver, keeping biliary glucose concentration lower tha moto (1980) demonstrate a highly selective glucose transporter in the biliary tree that returns glucose to the liver, keeping biliary glucose concentration lower than that in plasma, even during hyperglycemia. Moreover, hy transporter in the biliary tree that returns glucose to the of solu
liver, keeping biliary glucose concentration lower than port n
that in plasma, even during hyperglycemia. Moreover, other α
hyperosmotic cell swelling liver, keeping biliary glucose concentration lower than
that in plasma, even during hyperglycemia. Moreover,
hyperosmotic cell swelling stimulates both taurocholate
secretion into bile and bile acid-dependent bile flow
(Ha that in plasma, even during hyperglycemia. Moreover,
hyperosmotic cell swelling stimulates both taurocholate
secretion into bile and bile acid-dependent bile flow
(Hallbrucker et al., 1992). However, metabolic and iso-
top hyperosmotic cell swelling stimulates both taurocholate
secretion into bile and bile acid-dependent bile flow
(Hallbrucker et al., 1992). However, metabolic and iso-
topic dilution studies indicate that there may be intrasecretion into bile and bile acid-dependent bile flow ula
(Hallbrucker et al., 1992). However, metabolic and iso-
boyic dilution studies indicate that there may be intra-
cellular dehydration in rats treated 14 days before (Hallbrucker et al., 1992). However, metabolic and isotopic dilution studies indicate that there may be intracellular dehydration in rats treated 14 days before experimentation with streptozotocin (Anwana and is Garland,

canalicular bile formation. Thus, conflicting effects on bile SANDERS
canalicular bile formation. Thus, conflicting effects on
bile flow may be obtained when the so-called cholestatic
factors of hyperglycemia and intracellular dehydration Factors of SANDERS
canalicular bile formation. Thus, conflicting effects on
bile flow may be obtained when the so-called cholestatic
factors of hyperglycemia and intracellular dehydration
clash with the choleretic effect o canalicular bile formation. Thus, conflicting effects on
bile flow may be obtained when the so-called cholestatic
factors of hyperglycemia and intracellular dehydration
clash with the choleretic effect of increased bile ac canalicular bile formation. Thus, conflicting effects on
bile flow may be obtained when the so-called cholestatic
factors of hyperglycemia and intracellular dehydration
clash with the choleretic effect of increased bile ac bile flow may be obtained when the so-called cholest:
factors of hyperglycemia and intracellular dehydrat
clash with the choleretic effect of increased bile ε
(especially taurocholate) transport. Obviously, fut
studies factors of hyperglycemia and intracellular dehydration
clash with the choleretic effect of increased bile acid
(especially taurocholate) transport. Obviously, future
studies must examine these conflicting data on diabetes-(especially taurocholate) transport. Obviously, future
studies must examine these conflicting data on diabetes-
induced changes in bile flow rate, as well as address the
question of whether or not streptozotocin and alloxa studies must examine these conflicting data on diabetes-

\rll. Diabetes and Biliary Excretion

A. General Considerations Regarding Hepatobiliary Excretion

1987).

Some workers report bile flow in terms of flow per kg

body weight, whereas others report flow per gram liver, the intact liver, isolated liver parenchymal cells, and

resulting in potentially different interpretat tocin- and alloxan-induced diabetic animals fail to gain an experimental model for studies on bile acid secretion, weight as fast as normals, leading to even larger differ-
ences in the liver weight/body weight ratios of a port is derived from three distinct experimental models: A. General Considerations Regarding Hepatobiliary
Excretion
Current knowledge of canalicular membrane trans-
port is derived from three distinct experimental models:
the intact liver, isolated liver parenchymal cells, and A. General Considerations Regarding Hepdobitiary
Excretion
Current knowledge of canalicular membrane trans-
port is derived from three distinct experimental models:
the intact liver, isolated liver parenchymal cells, and
p Excretion
Current knowledge of canalicular membrane trans-
port is derived from three distinct experimental models:
the intact liver, isolated liver parenchymal cells, and
purified canalicular membrane vesicles (Arias et a Current knowledge of canalicular membrane trans-
port is derived from three distinct experimental models:
the intact liver, isolated liver parenchymal cells, and
purified canalicular membrane vesicles (Arias et al.,
1993; port is derived from three distinct experimental models:
the intact liver, isolated liver parenchymal cells, and
purified canalicular membrane vesicles (Arias et al.,
1993; Boyer et al., 1992; Kukongviriyapan and Stacey,
1 the intact liver, isolated liver parenchymal cells, and
purified canalicular membrane vesicles (Arias et al.,
1993; Boyer et al., 1992; Kukongviriyapan and Stacey,
1991; Petzinger, 1991; Siegers, 1991; Wisher and Evans,
19 purified canalicular membrane vesicles (Arias et al., 1993; Boyer et al., 1992; Kukongviriyapan and Stacey, 1991; Petzinger, 1991; Siegers, 1991; Wisher and Evans, 1975). Isolated hepatocytes have often been neglected as a 1993; Boyer et al., 1992; Kukongviriyapan and Stac
1991; Petzinger, 1991; Siegers, 1991; Wisher and Eva
1975). Isolated hepatocytes have often been neglected
an experimental model for studies on bile acid secreti
although 1991; Petzinger, 1991; Siegers, 1991; Wisher and Evans
1975). Isolated hepatocytes have often been neglected a
an experimental model for studies on bile acid secretion
although the intact organ allows only indirect observa 1975). Isolated hepatocytes have often been neglected as
an experimental model for studies on bile acid secretion,
although the intact organ allows only indirect observa-
tions of canalicular transport physiology. Direct m an experimental model for studies on bile acid secretion
although the intact organ allows only indirect observa
tions of canalicular transport physiology. Direct mea
surement of canalicular carrier function is accomplished although the intact organ allows only indirect obser
tions of canalicular transport physiology. Direct m
surement of canalicular carrier function is accomplis
in the membrane vesicles using specific indicator α
pounds t tions of canalicular transport physiology. Direct measurement of canalicular carrier function is accomplished
in the membrane vesicles using specific indicator com-
pounds that serve as markers for secretion. Unfortu-
nate surement of canalicular carrier function is accomplished
in the membrane vesicles using specific indicator com-
pounds that serve as markers for secretion. Unfortu-
nately, transport studies using basolateral-enriched and
 in the membrane vesicles using specific indicator compounds that serve as markers for secretion. Unfortunately, transport studies using basolateral-enriched and canalicular-enriched plasma membrane vesicles may be affected pounds that serve as markers for secretion. Unfortunately, transport studies using basolateral-enriched and canalicular-enriched plasma membrane vesicles may be affected by diabetes-induced alterations in membrane environm nately, transport studies using basolateral-enriched and
canalicular-enriched plasma membrane vesicles may be
affected by diabetes-induced alterations in membrane
environment, which may affect membrane isolation and
purity canalicular-enriched plasma membrane vesicles may be
affected by diabetes-induced alterations in membrane
environment, which may affect membrane isolation and
purity. These valid concerns, however, should not hinder
future affected by diabetes-induced alterations in membrane
environment, which may affect membrane isolation and
purity. These valid concerns, however, should not hinder
future efforts to apply this technology to membrane
transpo environment, which may affect membrane isolation and
purity. These valid concerns, however, should not hinder
future efforts to apply this technology to membrane
transport studies. Finally, the intact organ should be the
b purity. These valid concerns, however, should not hindefuture efforts to apply this technology to membrane transport studies. Finally, the intact organ should be the bile canaliculus; how secretion of compounds into the bi future efforts to apply this technology to membrane
transport studies. Finally, the intact organ should be the
best model to analyze bile formation and to study the
secretion of compounds into the bile canaliculus; how-
ev transport studies. Finally, the intact organ should be the best model to analyze bile formation and to study the secretion of compounds into the bile canaliculus; however, attempts to sample canalicular bile in vivo have f best model to analyze bile formation and to study the secretion of compounds into the bile canaliculus; how-
ever, attempts to sample canalicular bile in vivo have
failed. Recently, bile canaliculi of hepatocytes main-
tai secretion of compounds into the bile canaliculus; how-
ever, attempts to sample canalicular bile in vivo have
failed. Recently, bile canaliculi of hepatocytes main-
tained as monolayer cultures on a gas-permeable foil
have failed. Recently, bile canaliculi of hepatocytes maintained as monolayer cultures on a gas-permeable foil have been punctured and primary bile collected by micropipette (Petzinger et al., 1989b). This technique should offe tained as monolayer cultures on a gas-permeable foil
have been punctured and primary bile collected by mi-
cropipette (Petzinger et al., 1989b). This technique
should offer direct measurements of primary bile con-
tents in tents in the near future. we been punctured and primary bile collected by mi-
opipette (Petzinger et al., 1989b). This technique
ould offer direct measurements of primary bile con-
nts in the near future.
Canalicular transport events can be divided

cropipette (Petzinger et al., 1989b). This technique should offer direct measurements of primary bile contents in the near future.
Canalicular transport events can be divided into thromponents: physical diffusion, carriershould offer direct measurements of primary bile contents in the near future.
Canalicular transport events can be divided into three components: physical diffusion, carrier-mediated transport, and vesicular endocytosis or tents in the near future.
Canalicular transport events can be divided into three
components: physical diffusion, carrier-mediated trans-
port, and vesicular endocytosis or exocytosis. The local-
ization of ATP-driven pumps Canalicular transport events can be divided into three components: physical diffusion, carrier-mediated transport, and vesicular endocytosis or exocytosis. The localization of ATP-driven pumps, together with the direction components: physical diffusion, carrier-mediated trans-
port, and vesicular endocytosis or exocytosis. The local-
ization of ATP-driven pumps, together with the direction
of solute transport by sodium-driven symport and an port, and vesicular endocytosis or exocytosis. The localization of ATP-driven pumps, together with the direction
of solute transport by sodium-driven symport and anti-
port mechanisms, indicate that the liver shares with
o ization of ATP-driven pumps, together with the direction
of solute transport by sodium-driven symport and anti
port mechanisms, indicate that the liver shares with
other epithelia, such as kidney and intestine, common
tran of solute transport by sodium-driven symport and anti-
port mechanisms, indicate that the liver shares with
other epithelia, such as kidney and intestine, common
transport mechanisms with similar interplay and mod-
ulation port mechanisms, indicate that the liver shares with
other epithelia, such as kidney and intestine, common
transport mechanisms with similar interplay and mod-
ulation (Kinne, 1987; Meier, 1988, 1989; Moseley and
Boyer, 19 other epithelia, such as kidney and intestine, common
transport mechanisms with similar interplay and mod-
ulation (Kinne, 1987; Meier, 1988, 1989; Moseley and
Boyer, 1985; Zimniak and Awasthi, 1993). Compounds
are secrete transport mechanisms with similar interplay and modulation (Kinne, 1987; Meier, 1988, 1989; Moseley and Boyer, 1985; Zimniak and Awasthi, 1993). Compounds are secreted vectorially out of hepatic cytosol directly into bile. ulation (Kinne, 1987; Meier, 1988, 1989; Moseley and
Boyer, 1985; Zimniak and Awasthi, 1993). Compounds
are secreted vectorially out of hepatic cytosol directly
into bile. Although the direction of the secretion process
is Boyer, 1985; Zimniak and Awasthi, 1993). Compounds
are secreted vectorially out of hepatic cytosol directly
into bile. Although the direction of the secretion process
is in principle fixed, some compounds can reflux back
i

PHARMACOLOGICAL REVIEW

DIABETES MELLITUS AND HEPATOBILIARY FUNCTION ¹³

DIABETES MELLITUS AND HEP.
Boyer, 1974; Jones, A. L., et al., 1984). Once within the see
hepatocyte, a compound may also be secreted back into cre DIABETES MELLITUS AND HEPA
Boyer, 1974; Jones, A. L., et al., 1984). Once within the sen
hepatocyte, a compound may also be secreted back into cre
the blood stream across the sinusoidal membrane. This pro DIABETES MELLITUS AND HEI
Boyer, 1974; Jones, A. L., et al., 1984). Once within the
hepatocyte, a compound may also be secreted back into
the blood stream across the sinusoidal membrane. This
reflux bypassing of the canali Boyer, 1974; Jones, A. L., et al., 1984). Once within the hepatocyte, a compound may also be secreted back into the blood stream across the sinusoidal membrane. This reflux bypassing of the canalicular membrane is increase hepatocyte, a compound may also be secreted back into
the blood stream across the sinusoidal membrane. This
reflux bypassing of the canalicular membrane is in-
creased in cholestasis. Under those circumstances, hepatocyte, a compound may also be secreted back in
the blood stream across the sinusoidal membrane. Thi
reflux bypassing of the canalicular membrane is ir
creased in cholestasis. Under those circumstance:
canalicular tran the blood stream across the sinusoidal membrane. This perflux bypassing of the canalicular membrane is increased in cholestasis. Under those circumstances, to canalicular transport proteins may redistribute to basotiateral reflux bypassing of the canalicular membrane is
creased in cholestasis. Under those circumstar
canalicular transport proteins may redistribute to l
lateral membrane areas, and this sinusoidal secre
may even exceed biliary eased in cholestasis. Under those circumstances,
nalicular transport proteins may redistribute to baso-
teral membrane areas, and this sinusoidal secretion
ay even exceed biliary elimination (Sies, 1989).
Recent reviews of

canalicular transport proteins may redistribute to baso-
lateral membrane areas, and this sinusoidal secretion
may even exceed biliary elimination (Sies, 1989).
Recent reviews of transport studies with canalicular
vesicles lateral membrane areas, and this sinusoidal secretion ti
may even exceed biliary elimination (Sies, 1989). pl
Recent reviews of transport studies with canalicular in
vesicles have suggested that an interplay of primary, in may even exceed biliary elimination (Sies, 1989).
Recent reviews of transport studies with canalicular
vesicles have suggested that an interplay of primary,
secondary, and tertiary transport mechanisms sustain
canalicular Recent reviews of transport studies with canalicular invesicles have suggested that an interplay of primary, intercondary, and tertiary transport mechanisms sustain representation (Arias et al., 1993; Meier, tion 1988, 198 vesicles have suggested that an interplay of primary, in secondary, and tertiary transport mechanisms sustain recanalicular bile secretion (Arias et al., 1993; Meier, tion 1988, 1989). Primary transport systems utilize the canalicular bile secretion (Arias et al., 1993; Meier, tion 1988, 1989). Primary transport systems utilize the mar
chemical energy of ATP hydrolysis by ATPases to drive 3-0
uphill transmembrane solute transport (Arias, 19 1988, 1989). Primary transport systems utilize t
chemical energy of ATP hydrolysis by ATPases to dri
uphill transmembrane solute transport (Arias, 196
Zimniak and Awasthi, 1993). ATP splitting activity
the canaliculus and chemical energy of ATP hydrolysis by ATPases to drive
uphill transmembrane solute transport (Arias, 1989; cr
Zimniak and Awasthi, 1993). ATP splitting activity in to
the canaliculus and bile ducts is owing to a Ca^{2+} re uphill transmembrane solute transport (Arias, 1989; creation cluminal and Awasthi, 1993). ATP splitting activity in the canaliculus and bile ducts is owing to a Ca^{2+} requiring Mg^{2+} -stimulated ATPase, which is most Zimniak and Awasthi, 1993). ATP splitting activity
the canaliculus and bile ducts is owing to a Ca^{2+} requi
ing Mg^{2+} -stimulated ATPase, which is most likely mo
than one ATPase protein (Gautam et al., 1987). The
seem ing Mg^{2+} -stimulated ATPase, which is most likely more
than one ATPase protein (Gautam et al., 1987). There relative to the enlarged bile acid pool in diabetic rodents.
seem to be at least four transporting ATPases in ing Mg^{2+} -stimulated ATPase, which is most likely mothan one ATPase protein (Gautam et al., 1987). The seem to be at least four transporting ATPases in canaticular membranes, identified as the P-glycoprotein, biacid ca than one ATPase protein (Gautam et al., 1987). There seem to be at least four transporting ATPases in canalicular membranes, identified as the P-glycoprotein, bile acid carrier, and the non-bile acid organic anion transpor seem to be at least four transporting ATPases in canal-
icular membranes, identified as the P-glycoprotein, bile
acid carrier, and the non-bile acid organic anion trans-
porter (Arias et al. 1993; Zimniak and Awasthi, 1993 icular membranes, identified as the P-glycoprotein, bilacid carrier, and the non-bile acid organic anion transporter (Arias et al. 1993; Zimniak and Awasthi, 1993)
P-Glycoproteins, products of the multiple resistance
genes acid carrier, and the non-bile acid organic anion trans-
porter (Arias et al. 1993; Zimniak and Awasthi, 1993).
P-Glycoproteins, products of the multiple resistance
genes, transport mostly hydrophobic, neutral, or posi-
ti porter (Arias et al. 1993; Zimniak and Awasthi, 1993;
P-Glycoproteins, products of the multiple resistan
genes, transport mostly hydrophobic, neutral, or pos
tively charged chemicals into bile (Arias, 1990; Endico
and Ling P-Glycoproteins, products of the multiple resist:
genes, transport mostly hydrophobic, neutral, or j
tively charged chemicals into bile (Arias, 1990; End
and Ling, 1989; Kamimoto et al., 1989). Bile acid tr
port can occur genes, transport mostly hydrophobic, neutral, or pos
tively charged chemicals into bile (Arias, 1990; Endicot
and Ling, 1989; Kamimoto et al., 1989). Bile acid trans
port can occur via a membrane potential dependen
carrier tively charged chemicals into bile (Arias, 1990; Endicott and Ling, 1989; Kamimoto et al., 1989). Bile acid transport can occur via a membrane potential dependent-carrier or the ATP-dependent bile acid transporter (Adachi port can occur via a membrane potential dependent-
carrier or the ATP-dependent bile acid transporter (Ada-
chi et al., 1991; Arias et al., 1993; Nishida et al., 1991;
Ruetz et al., 1987; Zimniak and Awasthi, 1993). Finall port can occur via a membrane potential dependent-
carrier or the ATP-dependent bile acid transporter (Ada-
chi et al., 1991; Arias et al., 1993; Nishida et al., 1991;
Ruetz et al., 1987; Zimniak and Awasthi, 1993). Finall carrier or the ATP-dependent bile acid transporter (Ada
chi et al., 1991; Arias et al., 1993; Nishida et al., 1991
Ruetz et al., 1987; Zimniak and Awasthi, 1993). Finally
the nonbile acid carrier can move organic anions ac chi et al., 1991; Arias et al., 1993; Nishida et al., 1991;
Ruetz et al., 1987; Zimniak and Awasthi, 1993). Finally,
the nonbile acid carrier can move organic anions across
the membrane via either an electrogenic or an ATP Ruetz et al., 1987; Zimniak and Awasthi, 1993). Finally,
the nonbile acid carrier can move organic anions across
the membrane via either an electrogenic or an ATP-
dependent process (Ishikawa et al., 1990; Nishida et al.,
 the nonbile acid carrier can move organic anions across grathe membrane via either an electrogenic or an ATP-
dependent process (Ishikawa et al., 1990; Nishida et al., car
1992). The multispecific organic anion transporter the membrane via either an electrogenic or an ATP-
dependent process (Ishikawa et al., 1990; Nishida et al.,
1992). The multispecific organic anion transporter me-
diates transport of bilirubin diglucuronide, sulfated and
 dependent process (Ishikawa et al., 1990; Nishida et al., 1992). The multispecific organic anion transporter mediates transport of bilirubin diglucuronide, sulfated and glucuronidated bile salts, cysteinyl leukotrienes and 1992). The multispecific organic anion transporter mediates transport of bilirubin diglucuronide, sulfated and Succuronidated bile salts, cysteinyl leukotrienes and glutathione S-conjugates (Kitamura et al., 1990; Kobayas diates transport of bilirubin diglucuronide, sulfated and Sieplucuronidated bile salts, cysteinyl leukotrienes and glu-
tathione S-conjugates (Kitamura et al., 1990; Kobayashi glu
et al., 1990; Kuipers et al., 1988, 1989). glucuronidated bile salts, cysteinyl leukotrienes and glu-
tathione S-conjugates (Kitamura et al., 1990; Kobayashi glu
et al., 1990; Kuipers et al., 1988, 1989). Recent evidence tra
in canalicular vesicles indicates that t tathione S-conjugates (Kitamura et al., 1990; Kobayashi
et al., 1990; Kuipers et al., 1988, 1989). Recent evidence
in canalicular vesicles indicates that the canalicular bile
acid carrier exhibits a broad substrate specifi al., 1990). canalicular vesicles indicates that the canalicular bile
id carrier exhibits a broad substrate specificity and
transports other monovalent organic anions (Tamai et
, 1990).
Secondary canalicular transport systems use ion g acid carrier exhibits a broad substrate specificity and cotransports other monovalent organic anions (Tamai e al., 1990).
Secondary canalicular transport systems use ion gradients coupling substrate transport to parallel o

cotransports other monovalent organic anions (Tamai
al., 1990).
Secondary canalicular transport systems use ion gr
dients coupling substrate transport to parallel or an
parallel ion fluxes or to electrochemical potential d dients coupling substrate transport to parallel or anti-
parallel ion fluxes or to electrochemical potential differ-
ences across the canalicular membrane. A chloride-
driven chloride-bicarbonate exchange system (Meier, Secondary canalicular transport systems use ion gra-
dients coupling substrate transport to parallel or anti-
parallel ion fluxes or to electrochemical potential differ-
ences across the canalicular membrane. A chloride-
 dients coupling substrate transport to parallel or anti-
parallel ion fluxes or to electrochemical potential differ-
ences across the canalicular membrane. A chloride-
sightiven chloride-bicarbonate exchange system (Meier parallel ion fluxes or to electrochemical potential diffences across the canalicular membrane. A chloridriven chloride-bicarbonate exchange system (Me 1988) leads to osmotically active HCO_3^- within canaliculus. The $HCO_$ ences across the canalicular membrane. A chloridity driven chloride-bicarbonate exchange system (Mei
1988) leads to osmotically active HCO_3^- within to
canaliculus. The HCO_3^-/Cl^- -exchanger in the canaliculus acts in syn driven chloride-bicarbonate exchange system (Meier, 1988) leads to osmotically active HCO_3^- within the (canaliculus. The HCO_3^-/Cl^- -exchanger in the canaliculus acts in synergy with basolateral sodium-dependent to proto canaliculus. The HCO_3^-/Cl^- -exchanger in the canaliculus acts in synergy with basolateral sodium-dependent proton extrusion by a Na^+/H^+ -antiport (Rothstein, 1989) and sodium-dependent bicarbonate uptake by Na⁺- $HCO_3^$ canaliculus. The HCO_3^-/Cl^- -exchanger in the canal
lus acts in synergy with basolateral sodium-depend
proton extrusion by a Na⁺/H⁺-antiport (Rothstein, 19
and sodium-dependent bicarbonate uptake by N
 HCO_3^- -cotranspo s acts in synergy with basolateral sodium-dependent troton extrusion by a Na^+/H^+ -antiport (Rothstein, 1989) and sodium-dependent bicarbonate uptake by Na^+ - cr
 CO_3^- -cotransport (Weintraub and Macken, 1989). 197he mec $HCO₃$ ⁻-cotransport (Weintraub and Macken, 1989).

and sodium-dependent bicarbonate uptake by Na⁺- HCO_3 ⁻-cotransport (Weintraub and Macken, 1989).
The mechanisms of bile acid traffic into and out of hepatocytes have been reviewed recently (Meier, 1989, 1991). Canalic

canalicular bile secretion (Arias et al., 1993; Meier, tion. The second mechanism is an ATP-dependent pri-
1988, 1989). Primary transport systems utilize the mary active organic anion pump for dianionic bile acid
chemical EPATOBILIARY FUNCTION 13
sents the rate limiting step in overall hepatobiliary se-
cretion of bile acids and is a concentrative transport EPATOBILIARY FUNCTION 13
sents the rate limiting step in overall hepatobiliary se-
cretion of bile acids and is a concentrative transport
process that occurs against an unfavorable bile-to-cell EPATOBILIARY FUNCTION 13
sents the rate limiting step in overall hepatobiliary se-
cretion of bile acids and is a concentrative transport
process that occurs against an unfavorable bile-to-cell
concentration gradient of at sents the rate limiting step in overall hepatobiliary secretion of bile acids and is a concentrative transport process that occurs against an unfavorable bile-to-cell concentration gradient of at least 10:1. Two separate t sents the rate limiting step in overall hepatobiliary secretion of bile acids and is a concentrative transport process that occurs against an unfavorable bile-to-cell concentration gradient of at least 10:1. Two separate t cretion of bile acids and is a concentrative transport process that occurs against an unfavorable bile-to-concentration gradient of at least 10:1. Two separatransport mechanisms have been identified and potentially charact process that occurs against an unfavorable bile-to-c
concentration gradient of at least 10:1. Two separatransport mechanisms have been identified and patially characterized. One is a saturable, electrical pote
tial-driven concentration gradient of at least 10:1. Two separat
transport mechanisms have been identified and partially characterized. One is a saturable, electrical poten
tial-driven pathway for monoanionic, relatively hydro
philic transport mechanisms have been identified and partially characterized. One is a saturable, electrical potential-driven pathway for monoanionic, relatively hydrophilic bile acid amidates and taurocholate that is Na^+ -inde tially characterized. One is a saturable, electrical potential-driven pathway for monoanionic, relatively hydrophilic bile acid amidates and taurocholate that is Na^+ -independent (Meier et al., 1984, 1987) where the intr tial-driven pathway for monoanionic, relatively hydrephilic bile acid amidates and taurocholate that is Na independent (Meier et al., 1984, 1987) where the intracellular negative electrical potential (-30 to 40 m) represen philic bile acid amidates and taurocholate that is Na⁺-independent (Meier et al., 1984, 1987) where the intracellular negative electrical potential (-30 to 40 mV) represents an important driving force for bile acid secre independent (Meier et al., 1984, 1987) where the
intracellular negative electrical potential $(-30 \text{ to } 40 \text{ mV})$
represents an important driving force for bile acid secre-
tion. The second mechanism is an ATP-dependent pr intracellular negative electrical potential (-30 to 40 mV)
represents an important driving force for bile acid secre-
tion. The second mechanism is an ATP-dependent pri-
mary active organic anion pump for dianionic bile ac represents an important driving force for bile acid secretion. The second mechanism is an ATP-dependent primary active organic anion pump for dianionic bile acid 3–0-glucuronides and bile acid sulfates. In addition, microt tion. The second mechanism is an ATP-dependent
mary active organic anion pump for dianionic bile
3–0-glucuronides and bile acid sulfates. In addition
crotubule-dependent vesicle-mediated exceytosis se
to play an increasing mary active organic anion pump for dianionic bile acid 3–0-glucuronides and bile acid sulfates. In addition, microtubule-dependent vesicle-mediated exocytosis seems
to play an increasing role in the presence of supraphysio 3–0-glucuronides and bile acid sulfates. In addition, microtubule-dependent vesicle-mediated exocytosis seems
to play an increasing role in the presence of supraphysi-
ological bile acid loads (Meier, 1991). No one has yet crotubule-dependent vesicle-mediated exocytosis seems
to play an increasing role in the presence of supraphysi-
ological bile acid loads (Meier, 1991). No one has yet
determined how important this exocytosis mechanism is
r determined how important this exocytosis mechanism is

crotubule-dependent veside-mediated exccytosis seems
to play an increasing role in the presence of supraphysiological bile acid loads (Meier, 1991). No one has yet
determined how important this exccytosis mechanism is
rel determined how important this exocytosis mechanism is
relative to the enlarged bile acid pool in diabetic rodents.
The canalicular bile acid carrier is very likely a 100 to
110 kD protein (Fricker et al., 1987; Hong and Do relative to the enlarged bile acid pool in diabetic rodents.
The canalicular bile acid carrier is very likely a 100 to
110 kD protein (Fricker et al., 1987; Hong and Doyle,
1987; Kramer and Schneider, 1989; Ruetz et al., 1 The canalicular bile acid carrier is very likely a 100 to

110 kD protein (Fricker et al., 1987; Hong and Doyle,

1987; Kramer and Schneider, 1989; Ruetz et al., 1987).

Polyclonal antibodies raised against this protein i 110 kD protein (Fricker et al., 1987; Hong and Doyle, 1987; Kramer and Schneider, 1989; Ruetz et al., 1987).
Polyclonal antibodies raised against this protein inhibit both taurocholate uptake into as well as efflux from ca 1987; Kramer and Schneider, 1989; Ruetz et al., 1987).
Polyclonal antibodies raised against this protein inhibit
both taurocholate uptake into as well as efflux from
canalicular vesicles (Ruetz et al., 1987; Sippel et al., both taurocholate uptake into as well as efflux from canalicular vesicles (Ruetz et al., 1987; Sippel et al., 1990). However, the identity of the bile acid transporting protein is unclear, as other polypeptides with simila both taurocholate uptake into as well as efflux from canalicular vesicles (Ruetz et al., 1987; Sippel et al. 1990). However, the identity of the bile acid transportin protein is unclear, as other polypeptides with simila m canalicular vesicles (Ruetz et al., 1987; Sippel et al., 1990). However, the identity of the bile acid transporting protein is unclear, as other polypeptides with similar molecular weights are present at the canalicular me 1990). However, the identity of the bile acid transporting
protein is unclear, as other polypeptides with similar
molecular weights are present at the canalicular mem-
brane (Margollis et al., 1990; McCaughan et al., 1990 protein is unclear, as other polypeptides with simila
molecular weights are present at the canalicular men
brane (Margollis et al., 1990; McCaughan et al., 1990
The carrier-mediated secretion is believed to occur l
facilit gradient. ane (Margollis et al., 1990; McCaughan et al., 1990).
he carrier-mediated secretion is believed to occur by
cilitated diffusion down the bile acid electrochemical
adient.
There also seems to be an interrelated complex for

The carrier-mediated secretion is believed to occurrier-mediated diffusion down the bile acid electrocher gradient.
There also seems to be an interrelated complex for carrier-mediated excretion of glutathione, glutathionin facilitated diffusion down the bile acid electrochemical
gradient.
There also seems to be an interrelated complex for the
carrier-mediated excretion of glutathione, glutathione-
conjugates, and oxidized glutathione (Lauter gradient.
There also seems to be an interrelated complex for the
carrier-mediated excretion of glutathione, glutathione-
conjugates, and oxidized glutathione (Lauterburg, 1991;
Sies, 1989) with sodium-dependent reflux of g There also seems to be an interrelated complex for the carrier-mediated excretion of glutathione, glutathione-conjugates, and oxidized glutathione (Lauterburg, 1991; Sies, 1989) with sodium-dependent reflux of glutamate a carrier-mediated excretion of glutathione, glutathio
conjugates, and oxidized glutathione (Lauterburg, 19
Sies, 1989) with sodium-dependent reflux of glutam
and glycine (Ballatori et al., 1986). The secreted redu
glutathi conjugates, and oxidized glutathione (Lauterburg, 1991;
Sies, 1989) with sodium-dependent reflux of glutamate
and glycine (Ballatori et al., 1986). The secreted reduced
glutathione molecule is processed by γ -glutamyl-
 Sies, 1989) with sodium-dependent reflux of glutamate
and glycine (Ballatori et al., 1986). The secreted reduced
glutathione molecule is processed by γ -glutamyl-
transpeptidase, thereby producing glutamate and the
dipe and glycine (Ballatori et al., 1986). The secreted reduced glutathione molecule is processed by γ -glutamyl-
transpeptidase, thereby producing glutamate and the dipeptide cysteine-glycine. Glutamate is reabsorbed by a
s glutathione molecule is processed by γ -glutamyl-
transpeptidase, thereby producing glutamate and the
dipeptide cysteine-glycine. Glutamate is reabsorbed by a
sodium-driven carrier from the lumen back into the cell
(Bal transpeptidase, thereby producing glutamate and the dipeptide cysteine-glycine. Glutamate is reabsorbed b sodium-driven carrier from the lumen back into the conditional dipeptide cysteine/glyc might escape or be split furt dipeptide cysteine-glycine. Glutamate is reabsorbed by a sodium-driven carrier from the lumen back into the cell (Ballatori et al., 1986). The dipeptide cysteine/glycine might escape or be split further by luminal dipeptid sodium-driven carrier from the lumen back into the cell
(Ballatori et al., 1986). The dipeptide cysteine/glycine
might escape or be split further by luminal dipepti-
dylpeptidase IV. Glycine and cysteine also undergo re-
a (Ballatori et al., 1986). The dipeptide cysteine/glycine
might escape or be split further by luminal dipepti-
dylpeptidase IV. Glycine and cysteine also undergo re-
absorptive pathways. In contrast, oxidized glutathione
a might escape or be split further by luminal dipepti-
dylpeptidase IV. Glycine and cysteine also undergo re-
absorptive pathways. In contrast, oxidized glutathione
and glutathione-drug conjugates do not seem to be split
sig dylpeptidase IV. Glycine and cysteine also undergo
absorptive pathways. In contrast, oxidized glutathion
and glutathione-drug conjugates do not seem to be sp
significantly by biliary γ -glutamyltranspeptidase. A n
ural absorptive pathways. In contrast, oxidized gluta
and glutathione-drug conjugates do not seem to b
significantly by biliary γ -glutamyltranspeptidase.
ural glutathione conjugate, leukotriene-gluta
(leukotriene C₄), is and glutathione-drug conjugates do not seem to be
significantly by biliary γ -glutamyltranspeptidase.
ural glutathione conjugate, leukotriene-glutat
(leukotriene C₄), is split by γ -glutamyltranspept
starting the ca significantly by biliary γ -glutamyltranspeptidase. A natural glutathione conjugate, leukotriene-glutathione (leukotriene C₄), is split by γ -glutamyltranspeptidase, starting the catabolic cascade of the cysteinyl-l ural glutathione conjugate, leukotriene-glutathione
(leukotriene C_4), is split by γ -glutamyltranspeptidase,
starting the catabolic cascade of the cysteinyl-leuko-
trienes leukotriene C_4 , leukotriene D_4 , leukot (leukotriene C_4), is split by γ -glutamyltranspeptidase,
starting the catabolic cascade of the cysteinyl-leuko-
trienes leukotriene C_4 , leukotriene D_4 , leukotriene E_4 ,
and leukotriene-N-acetyl- E_4 . Leukotr starting the catabolic cascade of the cysteinyl-leuko-
trienes leukotriene C_4 , leukotriene D_4 , leukotriene E_4 ,
and leukotriene-N-acetyl- E_4 . Leukotrienes are also se-
creted by putative protein carriers into bi and leukotriene-N-acetyl-E₄. Leukotrienes are also se-
creted by putative protein carriers into bile (Huber et al.,
1989; Lauterburg, 1991). This transport system is
closely related to or identical with the bilirubin-di and leukotriene-N-acetyl-E₄. Leukotrienes are also a creted by putative protein carriers into bile (Huber et a 1989; Lauterburg, 1991). This transport system closely related to or identical with the bilirubin-digluo ron creted by putative protein carriers into bile (Huber et al., 1989; Lauterburg, 1991). This transport system is closely related to or identical with the bilirubin-diglucuronide transporter of hepatocytes, because both bilir

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

14 waTKINS AN
mutant rats (Huber et al., 1987). It is as yet unclear
whether endotoxins directly affect transport and WATKINS AND SA
mutant rats (Huber et al., 1987). It is as yet unclear wit
whether endotoxins directly affect transport and con
whether basolateral uptake or canalicular secretion of are waTKINS AND S
mutant rats (Huber et al., 1987). It is as yet unclear with
ether endotoxins directly affect transport and complete
whether basolateral uptake or canalicular secretion of an
leukotrienes might be involved in mutant rats (Huber et al., 1987). It is as yet uncleused whether endotoxins directly affect transport at whether basolateral uptake or canalicular secretion leukotrienes might be involved in endotoxin action. In addition t utant rats (Huber et al., 1987). It is as yet unclear
nether endotoxins directly affect transport and
nether basolateral uptake or canalicular secretion of
akotrienes might be involved in endotoxin action.
In addition to t

whether endotoxins directly affect transport and
whether basolateral uptake or canalicular secretion of
leukotrienes might be involved in endotoxin action.
In addition to the multi-drug resistance Gp170 carrier
protein, th whether basolateral uptake or canalicular secretion of all eukotrienes might be involved in endotoxin action. polynomially in addition to the multi-drug resistance Gp170 carrier in protein, the canalicular membrane possess leukotrienes might be involved in endotoxin action.
In addition to the multi-drug resistance Gp170 carrier
protein, the canalicular membrane possesses at least
two cation carriers for transporting type I and type II
compou In addition to the multi-drug resistance Gp170 carrie
protein, the canalicular membrane possesses at leat
two cation carriers for transporting type I and type
compounds (Steen and Meijer, 1991). Photoaffinity la
beling wit protein, the canalicular membrane possesses at least wive cation carriers for transporting type I and type II as
compounds (Steen and Meijer, 1991). Photoaffinity labeling with a type I organic cation uncovers two mem-
br two cation carriers for transporting type I and type II
compounds (Steen and Meijer, 1991). Photoaffinity la-
beling with a type I organic cation uncovers two mem-
brane polypeptides with apparent molecular weights of
48 k beling with a type I organic cation uncovers two membrane polypeptides with apparent molecular weights of 48 kD and 72 kD (Steen and Meijer, 1991). Photoaffinity labeling of isolated cells with a photolabile bulky mono-val brane polypeptides with apparent molecular weights of biased 48 kD and 72 kD (Steen and Meijer, 1991). Photoaffinity dabeling of isolated cells with a photolabile bulky monovalent quaternary amine that was used as a type 48 kD and 72 kD (Steen and Meijer, 1991). Photoaffinity dent of labeling of isolated cells with a photolabile bulky mono-
valent quaternary amine that was used as a type II ids, choose model compound reveals two plasma me labeling of isolated cells with a photolabile bulky movelent quaternary amine that was used as a type model compound reveals two plasma membrane bindipolypeptides with apparent molecular weights of 48 and 50 kD. Further wo valent quaternary amine that was use
model compound reveals two plasma mer
polypeptides with apparent molecular wo
and 50 kD. Further work to isolate, pur
terize these putative carriers is needed. terize these putative carriers is needed.

Profound alterations in bile composition are observed
in insulin-deficient diabetic patients or experimental an-
imals. Very early studies indicate that diabetic patients
 $\frac{1}{2}$ and an-linear triglycerides, as well as a B. Diabetes-induced Alterations of the Biliary Excretion
of Endogenous Compounds
Profound alterations in bile composition are observed
in insulin-deficient diabetic patients or experimental an-
imals. Very early studies in imals. Diabetes-induced Atterations of the Bittary Excretion
of Endogenous Compounds
Profound alterations in bile composition are observed
in insulin-deficient diabetic patients or experimental an-
imals. Very early studie at autopsy have a greater incidence of gallstones than insulin-deficient diabetic patients or experimental animals. Very early studies indicate that diabetic patients at autopsy have a greater incidence of gallstones than Profound alterations in bile composition are observed
in insulin-deficient diabetic patients or experimental an-
imals. Very early studies indicate that diabetic patients
at autopsy have a greater incidence of gallstones t in insulin-deficient diabetic patients or experimental animals. Very early studies indicate that diabetic patients
at autopsy have a greater incidence of gallstones than
nondiabetics (Goldstein and Schein, 1963; Lieber, 19 imals. Very early studies indicate that diabetic patients
at autopsy have a greater incidence of gallstones than
nondiabetics (Goldstein and Schein, 1963; Lieber, 1952).
A large study with 775 diabetic patients versus 1308 at autopsy have a greater incidence of gallstones than
nondiabetics (Goldstein and Schein, 1963; Lieber, 1952).
A large study with 775 diabetic patients versus 1308
nondiabetic patients failed to determine a positive cor-
 nondiabetics (Goldstein and Schein, 1963; Lieber, 1952).
A large study with 775 diabetic patients versus 1308
nondiabetic patients failed to determine a positive cor-
relation between diabetes and cholelithiasis (Honore,
1 nondiabetic patients failed to determine a positive correlation between diabetes and cholelithiasis (Honore, 1980). In contrast, there is epidemiological evidence that diabetics are two to three times more likely than nond nondiabetic patients failed to determine a positive correlation between diabetes and cholelithiasis (Honore, 1980). In contrast, there is epidemiological evidence that diabetics are two to three times more likely than nond relation between diabetes and cholelithiasis (Honore, 1980). In contrast, there is epidemiological evidence that diabetics are two to three times more likely than nondiabetic patients to have gallbladder disease (Strom et 1980). In contrast, there is epidemiological evidence that

diabetics are two to three times more likely than nondi-

abetic patients to have gallbladder disease (Strom et al.,

1986). Unfortunately, other work finds that diabetics are two to three times more likely than nondiabetic patients to have gallbladder disease (Strom et al., 1986). Unfortunately, other work finds that in type II diabetic patients cholelithiasis is associated with abetic patients to have gallbladder disease (Strom et al., 1986). Unfortunately, other work finds that in type II diabetic patients cholelithiasis is associated with obesity and not diabetes (Haber and Heaton, 1979), and d diabetic patients cholelithiasis is associated with obesity
and not diabetes (Haber and Heaton, 1979), and dietary
ascorbic acid deficiency, which exacerbates cholesterol
gallstone formation and increases risk for cholelit diabetic patients cholelithiasis is associated with obesi
and not diabetes (Haber and Heaton, 1979), and dieta
ascorbic acid deficiency, which exacerbates cholester
gallstone formation and increases risk for cholelithias
i and not diabetes (Haber and Heaton, 1979), and dietary
ascorbic acid deficiency, which exacerbates cholesterol
gallstone formation and increases risk for cholelithiasis
in diabetics, could also be involved (Simon, 1993). ascorbic acid deficiency, which exacerbates cholesterol gallstone formation and increases risk for cholelithiasis in diabetics, could also be involved (Simon, 1993). Lithogenesis may also result from some metabolic defect gallstone formation and increases risk for cholelithiasis
in diabetics, could also be involved (Simon, 1993). Litho-
genesis may also result from some metabolic defect in
the liver relating to excessive synthesis and excre in diabetics, could also be involved (Simon, 1993). Lit
genesis may also result from some metabolic defect
the liver relating to excessive synthesis and excretior
cholesterol, a change in bile acids, or both (Bouchi
1980; genesis may also result from some metabolic defect in the liver relating to excessive synthesis and excretion of the cholesterol, a change in bile acids, or both (Bouchier, ball 1980; Key et al., 1980; Saudek and Eder, 197 the liver relating to excessive synthesis and excretion of cholesterol, a change in bile acids, or both (Bouchier, 1980; Key et al., 1980; Saudek and Eder, 1979). Insulintreated diabetic patients have increased excretion o cholesterol, a change in bile acids, or both (Bouchier, ^{Da}
1980; Key et al., 1980; Saudek and Eder, 1979). Insulin-
treated diabetic patients have increased excretion of bile
and bile acids (Molloy and Tomkin, 1978), whe 1980; Key et al., 1980; Saudek and Eder, 1979). Insu
treated diabetic patients have increased excretion of
and bile acids (Molloy and Tomkin, 1978), whereas
treated people with diabetes show even higher fecal
acid excretio treated diabetic patients have increased excretion of bile
and bile acids (Molloy and Tomkin, 1978), whereas un-
treated people with diabetes show even higher fecal bile
acid excretion (Bennion and Grundy, 1977). Non-insuand bile acids (Molloy and Tomkin, 1978), whereas untreated people with diabetes show even higher fecal bile acid excretion (Bennion and Grundy, 1977). Non-insulin-dependent people with diabetes seem to excrete increased l treated people with diabetes show even higher fecal bile
acid excretion (Bennion and Grundy, 1977). Non-insu-
lin-dependent people with diabetes seem to excrete in-
creased levels of 12-ketolithocholic acid and cholesterol acid excretion (Bennion and Grundy, 1977). Non-insu-
lin-dependent people with diabetes seem to excrete in-
creased levels of 12-ketolithocholic acid and cholesterol
but decreased levels of cholic acid and deoxycholic acid lin-dependent people with diabetes seem to excrete
creased levels of 12-ketolithocholic acid and choleste
but decreased levels of cholic acid and deoxycholic a
(Andersen et al., 1987). Other studies, using differ
patient b creased levels of 12-ketolithocholic acid and cholesterol
but decreased levels of cholic acid and deoxycholic acid
(Andersen et al., 1987). Other studies, using different
patient bases, indicate that the bile of insulin-de but decreased levels of cholic acid and deoxycholic acid (Andersen et al., 1987). Other studies, using different patient bases, indicate that the bile of insulin-dependent people with diabetes is nearly normal in compositi (Andersen et al., 1987). Other studies, using different patient bases, indicate that the bile of insulin-dependent people with diabetes is nearly normal in composition (Andersen et al., 1986, 1988; Ponz de Leon et al., 197 patient bases, indicate that the bile of insulin-dependent
people with diabetes is nearly normal in composition
(Andersen et al., 1986, 1988; Ponz de Leon et al., 1978).
Meinders and coworkers (1981) postulate that lower i (Andersen et al., 1986, 1988; Ponz de Leon et al., 1978). with cholate (Simon et al., 1982) is manifested as an Meinders and coworkers (1981) postulate that lower in-
testinal motility, and therefore greater bacterial act Meinders and coworkers (1981) postulate that lower in-

) SANDERS
with diabetes. Larger epidemiological studies, which
control for obesity and hyperlipoproteinemic disorders, COM SANDERS
with diabetes. Larger epidemiological studies, which
control for obesity and hyperlipoproteinemic disorders,
are needed to determine whether or not diabetes predis-AMDERS
with diabetes. Larger epidemiological studies, whicontrol for obesity and hyperlipoproteinemic disorde
are needed to determine whether or not diabetes pred
poses patients to cholelithiasis. Most of the availal with diabetes. Larger epidemiological studies, which
control for obesity and hyperlipoproteinemic disorders,
are needed to determine whether or not diabetes predis-
poses patients to cholelithiasis. Most of the available
i control for obesity and hyperlipoproteinemic disorders,
are needed to determine whether or not diabetes predis-
poses patients to cholelithiasis. Most of the available
information suggests that the risk of treatment out-
w control for obesity and hyperlipoproteinemic disorders,
are needed to determine whether or not diabetes predis-
poses patients to cholelithiasis. Most of the available
information suggests that the risk of treatment out-
w are needed to determine whether or not diabetes p
poses patients to cholelithiasis. Most of the ava
information suggests that the risk of treatmen
weighs the potential benefits in most patients
asymptomatic gallstones (Har ses patients to cholelithiasis. Most of the available
formation suggests that the risk of treatment out-
eighs the potential benefits in most patients with
ymptomatic gallstones (Hartford et al., 1990).
Rahman and Coleman

beling with a type I organic cation uncovers two mem-
perfused rat liver that at high bile-acid secretion rates,
brane polypeptides with apparent molecular weights of
biliary cholesterol and phospholipid secretion is depe and 50 kD. Further work to isolate, purify and charac-

terize these putative carriers is needed.

al., 1990a; Watkins and Dykstra, 1987; Wey et al., 1984).

Serum and liver triacylglycerol concentrations are also
 B. Dia information suggests that the risk of treatment out-
weighs the potential benefits in most patients with
asymptomatic gallstones (Hartford et al., 1990).
Rahman and Coleman (1986) have shown in isolated
perfused rat liver weighs the potential benefits in most patients will assumptomatic gallstones (Hartford et al., 1990).
Rahman and Coleman (1986) have shown in isolat
perfused rat liver that at high bile-acid secretion rat
biliary cholester asymptomatic gallstones (Hartford et al., 1990).
Rahman and Coleman (1986) have shown in isola
perfused rat liver that at high bile-acid secretion rat
biliary cholesterol and phospholipid secretion is dep
dent on that of b Rahman and Coleman (1986) have shown in isolated
perfused rat liver that at high bile-acid secretion rates,
biliary cholesterol and phospholipid secretion is depen-
dent on that of bile acids. In either alloxan- or strepto perfused rat liver that at high bile-acid secretion rates,
biliary cholesterol and phospholipid secretion is depen-
dent on that of bile acids. In either alloxan- or strepto-
zotocin-treated rats, the biliary concentration biliary cholesterol and phospholipid secretion is dependent on that of bile acids. In either alloxan- or strepto-
zotocin-treated rats, the biliary concentration of bile ac-
ids, cholesterol, lecithin and phospholipids is dent on that of bile acids. In either alloxan- or strepto-
zotocin-treated rats, the biliary concentration of bile ac-
ids, cholesterol, lecithin and phospholipids is markedly
increased (Carnovale et al., 1987; Hassan and zotocin-treated rats, the biliary concentration of bile ac-
ids, cholesterol, lecithin and phospholipids is markedly
increased (Carnovale et al., 1987; Hassan and Subbiah,
1980; Kirkpatrick and Kraft, 1984; Nervi et al., 1 ids, cholesterol, lecithin and phospholipids is markedly
increased (Carnovale et al., 1987; Hassan and Subbiah,
1980; Kirkpatrick and Kraft, 1984; Nervi et al., 1974,
1978; Siow et al., 1991; Stohs et al., 1979; Villanueva increased (Carnovale et al., 1987; Hassan and Subbiah,
1980; Kirkpatrick and Kraft, 1984; Nervi et al., 1974,
1978; Siow et al., 1991; Stohs et al., 1979; Villanueva et
al., 1990a; Watkins and Dykstra, 1987; Wey et al., 19 1980; Kirkpatrick and Kraft, 1984; Nervi et al., 1974,
1978; Siow et al., 1991; Stohs et al., 1979; Villanueva et
al., 1990a; Watkins and Dykstra, 1987; Wey et al., 1984).
Serum and liver triacylglycerol concentrations are 1978; Siow et al., 1991; Stohs et al., 1979; Villanueva et al., 1990a; Watkins and Dykstra, 1987; Wey et al., 1984).
Serum and liver triacylglycerol concentrations are also
elevated (Woods et al., 1981). Akiyoshi and cowor al., 1990a; Watkins and Dykstra, 1987; Wey et al., 1984).
Serum and liver triacylglycerol concentrations are also
elevated (Woods et al., 1981). Akiyoshi and coworkers
(1986) note that gallstones produced by genetic diabet Serum and liver triacylglycerol concentrations are also
elevated (Woods et al., 1981). Akiyoshi and coworkers
(1986) note that gallstones produced by genetic diabetic
mice have cholesterol as a major (greater than 85%)
com elevated (Woods et al., 1981). Akiyoshi and coworkers (1986) note that gallstones produced by genetic diabetic mice have cholesterol as a major (greater than 85%) component. Alloxan-induced diabetic rabbits have reduced cl (1986) note that gallstones produced by genetic diabetic mice have cholesterol as a major (greater than 85%) component. Alloxan-induced diabetic rabbits have reduced clearance of plasma triglycerides, as well as altered a mice have cholesterol as a major (greater than 85%)
component. Alloxan-induced diabetic rabbits have re-
duced clearance of plasma triglycerides, as well as al-
tered apolipoprotein E expression and cholesterol ho-
meostas meostasis (Lenich et al., 1991). Other reports indicate that total bile acid secretion may not change (Hassan et al., 1982; Sadahiro et al., 1970), but the composition of duced clearance of plasma triglycerides, as well as altered apolipoprotein E expression and cholesterol homeostasis (Lenich et al., 1991). Other reports indicate that total bile acid secretion may not change (Hassan et al. tered apolipoprotein E expression and cholesterol h
meostasis (Lenich et al., 1991). Other reports indica
that total bile acid secretion may not change (Hassan
al., 1982; Sadahiro et al., 1970), but the composition
the bil meostasis (Lenich et al., 1991). Other reports indicate
that total bile acid secretion may not change (Hassan et
al., 1982; Sadahiro et al., 1970), but the composition of
the bile acid pool generally shows an increase in t that total bile acid secretion may not change (Hassan et al., 1982; Sadahiro et al., 1970), but the composition of the bile acid pool generally shows an increase in tauro-
chenodeoxycholate (Siow et al., 1991), a decrease al., 1982; Sadahiro et al., 1970), but the composition c
the bile acid pool generally shows an increase in taurc
chenodeoxycholate (Siow et al., 1991), a decrease in che
nodeoxycholate, and either no change or an increase the bile acid pool generally shows an increase in tauro-
chenodeoxycholate (Siow et al., 1991), a decrease in che-
nodeoxycholate, and either no change or an increase in
cholate (Hassan et al., 1982; Uchida et al., 1979). chenodeoxycholate (Siow et al., 1991), a decrease in chenodeoxycholate, and either no change or an increase in cholate (Hassan et al., 1982; Uchida et al., 1979). Hansson (1989) speculates that an increase in microsomal nodeoxycholate, and either no change or an increase in cholate (Hassan et al., 1982; Uchida et al., 1979). Hansson (1989) speculates that an increase in microsomal 12α -hydroxylase may explain the increased cholic acid sson (1989) speculates that an increase in microsomal 12α -hydroxylase may explain the increased cholic acid excretion into bile by diabetic rats. Illing (1981) suggests that alterations in bile acid output in streptozo 12α -hydroxylase may explain the increased cholic acid excretion into bile by diabetic rats. Illing (1981) suggests that alterations in bile acid output in streptozotocintreated rats may also result from a change in the 12α -hydroxylase may explain the increased cholic acid excretion into bile by diabetic rats. Illing (1981) suggests that alterations in bile acid output in streptozotocintreated rats may also result from a change in the excretion into bile by diabetic rats. Illing (1981) suggests
that alterations in bile acid output in streptozotocin-
treated rats may also result from a change in the en-
terohepatic circulation of bile acids, owing eithe treated rats may also result from a change in the enterohepatic circulation of bile acids, owing either to a direct effect of streptozotocin on the intestinal cells or to the antibiotic activity of streptozotocin on the in treated rats may also result from a change in the en-
terohepatic circulation of bile acids, owing either to a
direct effect of streptozotocin on the intestinal cells or to
the antibiotic activity of streptozotocin on the terohepatic circulation of bile acids, owing either to a
direct effect of streptozotocin on the intestinal cells or to
the antibiotic activity of streptozotocin on the intestinal
bacteria involved in bile acid biotransform direct effect of streptozotocin on the intestinal cells or to
the antibiotic activity of streptozotocin on the intestinal
bacteria involved in bile acid biotransformation. It is
also possible that the alterations noted in the antibiotic activity of streptozotocin on the intestinal
bacteria involved in bile acid biotransformation. It is
also possible that the alterations noted in bile acid
metabolism may be influenced by the hyperphagia, hybacteria involved in bile acid biotransformation. I
also possible that the alterations noted in bile a
metabolism may be influenced by the hyperphagia,
pertriglyceridemia, and hypercholesterolemia that
company the resultin also possible that the alterations noted in
metabolism may be influenced by the hyperpl
pertriglyceridemia, and hypercholesterolemia
company the resulting streptozotocin-induced
cemia (Wey et al., 1984; Young et al., 1982) etabolism may be influenced by the hyperphagia, hy-
rtriglyceridemia, and hypercholesterolemia that ac-
mpany the resulting streptozotocin-induced hypergly-
mia (Wey et al., 1984; Young et al., 1982).
Nevertheless, the var

pertriglyceridemia, and hypercholesterolemia that a company the resulting streptozotocin-induced hypergl cemia (Wey et al., 1984; Young et al., 1982).
Nevertheless, the variations in bile composition theocur in people with company the resulting streptozotocin-induced hypergly-
cemia (Wey et al., 1984; Young et al., 1982).
Nevertheless, the variations in bile composition that
occur in people with diabetes could affect biliary excre-
tory func cemia (Wey et al., 1984; Young et al., 1982).
Nevertheless, the variations in bile composition that
occur in people with diabetes could affect biliary excre-
tory function. In rats, adaptation to selective biliary
obstruct Nevertheless, the variations in bile composition that
occur in people with diabetes could affect biliary excre-
tory function. In rats, adaptation to selective biliary
obstruction and intraduodenal infusion of taurocholate occur in people with diabetes could affect biliary excretory function. In rats, adaptation to selective biliary obstruction and intraduodenal infusion of taurocholate (Adler et al., 1977), its repeated oral administration tory function. In rats, adaptation to selective biliary
obstruction and intraduodenal infusion of taurocholate
(Adler et al., 1977), its repeated oral administration
(Watkins and Klaassen, 1981), or repeated oral dosing
wi obstruction and intraduodenal infusion of taurocholate (Adler et al., 1977), its repeated oral administration (Watkins and Klaassen, 1981), or repeated oral dosing with cholate (Simon et al., 1982) is manifested as an incr (Adler et al., 1977), its repeated oral administration (Watkins and Klaassen, 1981), or repeated oral dosing with cholate (Simon et al., 1982) is manifested as an increase in bile acid excretory transport. Intravenous infu with cholate (Simon et al., 1982) is manifested as an infusion of taurocholate seems to be cholestatic and ei-

aspet

DIABETES MELLITUS AND HEPATOBILIARY FUNCTION ¹⁵

DIABETES MELLITUS AND HET
(Carnovale et al., 1986; Villanueva et al., 1990a). Biliary thexeretion of proteins may also be stimulated by tauro-DIABETES MELLITUS A
(Carnovale et al., 1986; Villanueva et al., 1990a). Bilia
excretion of proteins may also be stimulated by tauro-
cholate injection (Marinelli et al., 1988). Taurolith DIABETES MELLITUS
(Carnovale et al., 1986; Villanueva et al., 1990a). Bi
excretion of proteins may also be stimulated by ta
cholate injection (Marinelli et al., 1988). Taurol
cholate infusion produces a rapid, transient ch (Carnovale et al., 1986; Villanueva et al., 1990a). Biliary
excretion of proteins may also be stimulated by tauro-
cholate injection (Marinelli et al., 1988). Taurolitho-
cholate infusion produces a rapid, transient choles (Carnovale et al., 1986; Villanueva et al., 1990a). Biliary
excretion of proteins may also be stimulated by tauro-
cholate injection (Marinelli et al., 1988). Taurolitho-
cholate infusion produces a rapid, transient choles excretion of proteins may also be stimulated by tauro-
cholate injection (Marinelli et al., 1988). Taurolitho-
cholate infusion produces a rapid, transient cholestasis
lev
and a decrease in hepatic cytochrome P450 content, cholate infusion produces a rapid, transient cholestasis and a decrease in hepatic cytochrome P450 content, perhaps owing to the effect of taurolithocholate on the function and composition of the smooth endoplasmic cholate infusion produces a rapid, transient cholestasis
and a decrease in hepatic cytochrome P450 content,
perhaps owing to the effect of taurolithocholate on the
function and composition of the smooth endoplasmic
reticul and a decrease in hepatic cytochrome P450 content, pre
perhaps owing to the effect of taurolithocholate on the creduction and composition of the smooth endoplasmic 198
reticulum (Berry et al., 1985). Another study indicat perhaps owing to the effect of taurolithocholate on the function and composition of the smooth endoplasmic reticulum (Berry et al., 1985). Another study indicates that insulin deficiency reduces bilirubin excretion into bi function and composition of the smooth endoplasmic 19
reticulum (Berry et al., 1985). Another study indicates
that insulin deficiency reduces bilirubin excretion into
bile (Muller-Oerlinghausen and Schenke, 1970), an ef-
 that insulin deficiency reduces bilirubin excretion into bile (Muller-Oerlinghausen and Schenke, 1970), an effect probably owing to altered bile acid secretion. When exogenous bilirubin is injected into streptozotocin-in-
 reticulum (Berry et al., 1985). Another study indicates

teine, not the glutathione conjugate, appears in the bile of

that insulin deficiency reduces bilirubin excretion into

bile (Muller-Oerlinghausen and Schenke, 1970 bile (Muller-Oerlinghausen and Schenke, 1970), an ofect probably owing to altered bile acid secretion. When exogenous bilirubin is injected into streptozotocin-iduced diabetic rats, clearance of bilirubin and bilia excreti fect probably owing to altered bile acid secretion. Whe exogenous bilirubin is injected into streptozotocin-in duced diabetic rats, clearance of bilirubin and bilian excretion of monoglucuronide and diglucuronide conjugate exogenous bilirubin is injected into streptozotocin-in-
duced diabetic rats, clearance of bilirubin and biliary
excretion of monoglucuronide and diglucuronide conju-
gates of bilirubin are unchanged (Watkins and Sher-
man, duced diabetic rats, clearance of bilirubin and biliary
excretion of monoglucuronide and diglucuronide conju-
gates of bilirubin are unchanged (Watkins and Sher-
man, 1992). In contrast, Gonzalez and Fevery (1992)
report i excretion of monoglucuronide and diglucuronide conjugates of bilirubin are unchanged (Watkins and Sherman, 1992). In contrast, Gonzalez and Fevery (1992) report increased bilirubin secretion and metabolism in genetically d gates of bilirubin are unchanged (Watkins and Sheman, 1992). In contrast, Gonzalez and Fevery (199
report increased bilirubin secretion and metabolism
genetically diabetic rats, and Tunon et al. (1991) fin
enhanced bilirub man, 1992). In contrast, Gonzalez and Fevery (1992)
report increased bilirubin secretion and metabolism in
genetically diabetic rats, and Tunon et al. (1991) find
enhanced bilirubin secretion in streptozotocin-diabetic
ra report increased bilirubin secretion and metabolism in
genetically diabetic rats, and Tunon et al. (1991) find
enhanced bilirubin secretion in streptozotocin-diabetic
rats. Bile acids clearly influence the hepatic uptake a genetically diabetic rats, and Tunon et al. (1991) find
enhanced bilirubin secretion in streptozotocin-diabetic
rats. Bile acids clearly influence the hepatic uptake and
biliary transport of numerous cholephilic chemicals, enhanced bilirubin secretion in streptozotocin-
rats. Bile acids clearly influence the hepatic upt
biliary transport of numerous cholephilic chemic
the direction of the influence varies with the c
(Klaassen and Watkins, 19 ts. Bile acids clearly influence the hepatic uptake a
liary transport of numerous cholephilic chemicals, θ
e direction of the influence varies with the cholep
laassen and Watkins, 1984; Strange, 1984).
In addition to b

biliary transport of numerous cholephilic chemicals, but
the direction of the influence varies with the cholephil ing
(Klaassen and Watkins, 1984; Strange, 1984).
In addition to bile acids, secretion of several electro-
l the direction of the influence varies with the cholephil $\frac{m_1}{n_2}$ (Klaassen and Watkins, 1984; Strange, 1984). Re In addition to bile acids, secretion of several electrodity stems (Na⁺, bicarbonate) can increase bi (Klaassen and Watkins, 1984; Strange, 1984).

In addition to bile acids, secretion of several electro-

lytes (Na⁺, bicarbonate) can increase bile flow, and

there is evidence that many of the transport systems are

Na In addition to bile acids, secretion of several electro-
lytes $(Na^+$, bicarbonate) can increase bile flow, and
there is evidence that many of the transport systems are
 Na^+ -dependent. Concentrations of sodium ions incre lytes $(Na^+$, bicarbonate) can increase bile flow, and there is evidence that many of the transport systems are Na^+ -dependent. Concentrations of sodium ions increase and bicarbonate ions decrease in diabetic bile, but p there is evidence that many of the transport systems are Na^+ -dependent. Concentrations of sodium ions increase and bicarbonate ions decrease in diabetic bile, but potassium and chloride ion concentrations are unchanged $Na⁺$ -dependent. Concentrations of sodium ions increase and bicarbonate ions decrease in diabetic bile, but po tassium and chloride ion concentrations are unchangee from normal (Watkins and Dykstra, 1987). The increas and bicarbonate ions decrease in diabetic bile, but potassium and chloride ion concentrations are unchanged from normal (Watkins and Dykstra, 1987). The increase in excretion of bile acids should stimulate bile acid-
depen tassium and chloride ion concentrations are unchan
from normal (Watkins and Dykstra, 1987). The incre
in excretion of bile acids should stimulate bile a
dependent bile formation, whereas the decrease in
carbonate ion excre from normal (Watkins and Dykstra, 1987). The increase
in excretion of bile acids should stimulate bile acid-
dependent bile formation, whereas the decrease in bi-
carbonate ion excretion should diminish bile acid-inde-
pen in excretion of bile acids should stimulate bile
dependent bile formation, whereas the decrease is
carbonate ion excretion should diminish bile acid-i
pendent bile formation. The available data man
both reduced and normal dependent bile formation, whereas the decrease in bi-
carbonate ion excretion should diminish bile acid-inde-
in pendent bile formation. The available data manifest
both reduced and normal bile flow rates in insulin-deficarbonate ion excretion should diminish bile acid-independent bile formation. The available data manifest both reduced and normal bile flow rates in insulin-deficient rats, which indicates that other mechanisms of bile do pendent bile formation. The available data manife
both reduced and normal bile flow rates in insulin-de
cient rats, which indicates that other mechanisms of bi
formation must also be considered besides the excretio
of osmo th reduced and normal bile flow rates in insulin-defi-
ent rats, which indicates that other mechanisms of bile
dermation must also be considered besides the excretion
osmotically active bile acids and inorganic solutes.
A

cient rats, which indicates that other mechanisms of bile
formation must also be considered besides the excretion
of osmotically active bile acids and inorganic solutes.
All these data indicate that many alterations in th formation must also be considered besides the excretion
of osmotically active bile acids and inorganic solutes.
All these data indicate that many alterations in the
biliary excretion of endogenous compounds occur during
pe diabetes. **C. Diabetes.**

C. Diabetes-induced Alterations of the Biliary Excretion

of Xenobiotics

conservations of the Biliary Excretion

of Xenobiotics

diabetes.
C. Diabetes-ind
of Xenobiotics
The liver pli

C. Diabetes-induced Alterations of the Biliary Excretion of Xenobiotics a central role in extracting a wide the variety of compounds from the portal circulation before their entry into the systemic circulation. In additio C. Diabetes-induced Alterations of the Biliary Excretion et a
of Xenobiotics affects of
their plays a central role in extracting a wide
variety of compounds from the portal circulation before $\frac{1}{2}$
their entry into th of *Xenobiotics*
The liver plays a central role in extracting a wide
variety of compounds from the portal circulation before
their entry into the systemic circulation. In addition to
the excretion of bile acids, cholestero The liver plays a central role in extracting a wide
variety of compounds from the portal circulation before
their entry into the systemic circulation. In addition to
the excretion of bile acids, cholesterol, and lecithin, variety of compounds from the portal circulation before their entry into the systemic circulation. In addition to alter the excretion of bile acids, cholesterol, and lecithin, diabetes seems to affect the excretion of xen their entry into the systemic circulation. In addition to
the excretion of bile acids, cholesterol, and lecithin, dia-
betes seems to affect the excretion of xenobiotics that are
processed by the liver. For example, altere the excretion of bile acids, cholesterol, and lecithin, diabetes seems to affect the excretion of xenobiotics that are processed by the liver. For example, altered metabolism and excretion of acetaminophen is seen in diabe betes seems to affect the excretion of xenobiotics that are
processed by the liver. For example, altered metabolism of important drugs are significantly affected. It is not
and excretion of acetaminophen is seen in diabeti and excretion of acetaminophen is seen in diabetic rats,
where there is a qualitative difference in the concentra-
tion of the usual metabolites (Jollow et al., 1974; Siegers
and Schutt, 1979; Siegers et al., 1983; Watkins tion of the usual metabolites (Jollow et al., 1974; Siegers

EPATOBILIARY FUNCTION
than normals to the toxic effects of acetaminophen, appa
ently owing to an enhanced capacity for glucuronidati EPATOBILIARY FUNCTION
than normals to the toxic effects of acetaminophen, apparently owing to an enhanced capacity for glucuronidation
(Price and Jollow, 1982, 1986). However, the enhanced EPATOBILIARY FUNCTION 15

than normals to the toxic effects of acetaminophen, apparently owing to an enhanced capacity for glucuronidation

(Price and Jollow, 1982, 1986). However, the enhanced

levels of glucuronide and s than normals to the toxic effects of acetaminophen, apparently owing to an enhanced capacity for glucuronidation (Price and Jollow, 1982, 1986). However, the enhanced levels of glucuronide and sulfate conjugates are excret than normals to the toxic effects of acetaminophen, apparently owing to an enhanced capacity for glucuronidation (Price and Jollow, 1982, 1986). However, the enhanced levels of glucuronide and sulfate conjugates are excret ently owing to an enhanced capacity for glucuronidation (Price and Jollow, 1982, 1986). However, the enhanced levels of glucuronide and sulfate conjugates are excreted preferentially in the urine of diabetics, resulting in (Price and Jollow, 1982, 1986). However, the enhanced
levels of glucuronide and sulfate conjugates are excreted
preferentially in the urine of diabetics, resulting in de-
creased levels of these metabolites in bile (Sieger levels of glucuronide and sulfate conjugates are excreted
preferentially in the urine of diabetics, resulting in de-
creased levels of these metabolites in bile (Siegers et al.,
1985; Watkins and Sherman, 1992). In additio preferentially in the urine of diabetics, resulting in decreased levels of these metabolites in bile (Siegers et al., 1985; Watkins and Sherman, 1992). In addition, the cysteine, not the glutathione conjugate, appears in creased levels of these metabolites in bile (Siegers et 1985; Watkins and Sherman, 1992). In addition, the c
teine, not the glutathione conjugate, appears in the bile
diabetic rats, indicating an enhanced breakdown of
glu 1985; Watkins and Sherman, 19
teine, not the glutathione conjug
diabetic rats, indicating an enh
glutathione conjugate by
(Watkins and Sherman, 1992).
Likewise, decreased fecal and ine, not the glutathione conjugate, appears in the bilar
abetic rats, indicating an enhanced breakdown of intathione conjugate by γ -glutamyltranspeptidities
abetic metab-
Likewise, decreased fecal and biliary levels of

eliminated primarily as ester and ether glucuronides, is

C. Diabetes-induced Alterations of the Biliary Excretion

of and the streptozotocin-diabetic rats (Lin

of Xenobiotics

of Xenobiotics

of Menobiotics

of the liver diabetic rats, indicating an enhanced breakdown of the
glutathione conjugate by γ -glutamyltranspeptidase
(Watkins and Sherman, 1992).
Likewise, decreased fecal and biliary levels of metab-
olites of diazepam are observ glutathione conjugate by γ -glutamyltranspeptidase (Watkins and Sherman, 1992).
Likewise, decreased fecal and biliary levels of metabolites of diazepam are observed in 1-day diabetic rats after its oral administration ((Watkins and Sherman, 1992).

Likewise, decreased fecal and biliary levels of metabolites of diazepam are observed in 1-day diabetic rat

after its oral administration (Andrews and Griffiths

1984). Though highly metaboliz Likewise, decreased fecal and biliary levels of m
olites of diazepam are observed in 1-day diabetic
after its oral administration (Andrews and Grif
1984). Though highly metabolized by both phase I
ethylation and hydroxylat olites of diazepam are observed in 1-day diabetic rats
after its oral administration (Andrews and Griffiths,
1984). Though highly metabolized by both phase I dem-
ethylation and hydroxylation and phase II glucuronida-
tion after its oral administration (Andrews and Griffiths, 1984). Though highly metabolized by both phase I demethylation and hydroxylation and phase II glucuronidation reactions before its excretion via the biliary route, no d 1984). Though highly metabolized by both phase I demethylation and hydroxylation and phase II glucuronidation reactions before its excretion via the biliary route, no differences in the metabolism of diazepam are observed. ethylation and hydroxylation and phase II glucuronidation reactions before its excretion via the biliary route, no differences in the metabolism of diazepam are observed. The unchanged cardiac glycosides digoxin and ouabai tion reactions before its excretion via the biliary route,
no differences in the metabolism of diazepam are ob-
served. The unchanged cardiac glycosides digoxin and
ouabain undergo very little biotransformation before be-
 no differences in the metabolism of diazepam are observed. The unchanged cardiac glycosides digoxin and ouabain undergo very little biotransformation before being excreted into the bile (Russell and Klaassen, 1973). Recent served. The unchanged cardiac glycosides digoxin and
ouabain undergo very little biotransformation before be-
ing excreted into the bile (Russell and Klaassen, 1973).
Recent studies have shown that biliary excretion of bot ouabain undergo very little biotransformation before be-
ing excreted into the bile (Russell and Klaassen, 1973).
Recent studies have shown that biliary excretion of both
digoxin (Watkins and Sherman, 1992) and ouabain
(Wa ing excreted into the bile (Russell and Klaassen, 1973).
Recent studies have shown that biliary excretion of both
digoxin (Watkins and Sherman, 1992) and ouabain
(Watkins and Dykstra, 1987) is increased in diabetic
rats, i Recent studies have shown that biliary excretion of both
digoxin (Watkins and Sherman, 1992) and ouabain
(Watkins and Dykstra, 1987) is increased in diabetic
rats, in spite of an unchanged rate of bile flow. Watkins
and Dy digoxin (Watkins and Sherman, 1992) and ouabain
(Watkins and Dykstra, 1987) is increased in diabetic
rats, in spite of an unchanged rate of bile flow. Watkins
and Dykstra (1987) find that total and biliary clearance
of an (Watkins and Dykstra, 1987) is increased in diabetic rats, in spite of an unchanged rate of bile flow. Watkins and Dykstra (1987) find that total and biliary clearance of an organic cation procainamide ethobromide, uncharg rats, in spite of an unchanged rate of bile flow. Watkin
and Dykstra (1987) find that total and biliary clearanc
of an organic cation procainamide ethobromide, un
charged ouabain, and the bile acid taurocholate are en
hanc and Dykstra (1987) find that total and biliary clearance
of an organic cation procainamide ethobromide, un-
charged ouabain, and the bile acid taurocholate are en-
hanced by diabetes, whereas clearance of the bile acid-
in charged ouabain, and the bile acid taurocholate are enhanced by diabetes, whereas clearance of the bile acid-
independent anion phenol red is apparently not affected.
Further differentiation indicates that the bile flow ra charged ouabain, and the bile acid taurocholate are α hanced by diabetes, whereas clearance of the bile acid-independent anion phenol red is apparently not affect Further differentiation indicates that the bile flow ri hanced by diabetes, whereas clearance of the bile acid
independent anion phenol red is apparently not affected
Further differentiation indicates that the bile flow rat
in diabetics is unchanged by the bile acid-independen
 independent anion phenol red is apparently not affected
Further differentiation indicates that the bile flow rat
in diabetics is unchanged by the bile acid-independen
organic anions (eosin, amaranth, and phenol-3, 6-di
bro Further differentiation indicates that the bile flow rate
in diabetics is unchanged by the bile acid-independent
organic anions (eosin, amaranth, and phenol-3, 6-di-
bromphthalein disulfonate) but that certain bile acid-
d in diabetics is unchanged by the bile acid-independent
organic anions (eosin, amaranth, and phenol-3, 6-di-
bromphthalein disulfonate) but that certain bile acid-
dependent anions (bromcresol green, indocyanine green
and r organic anions (eosin, amaranth, and phenol-3, 6-di-
bromphthalein disulfonate) but that certain bile acid-
dependent anions (bromcresol green, indocyanine green
and rose bengal) are choleretic (Watkins and Noda,
1986). Oe gentamicin. Finally, diflunisal, a fluorinated salicylate dependent anions (bromcresol green, indocyanine green
and rose bengal) are choleretic (Watkins and Noda,
1986). Oehler and coworkers (1989) show that non-mi-
celle-forming bile acids increase the biliary excretion of
genta and rose bengal) are choleretic (Watkins and Noda, 1986). Oehler and coworkers (1989) show that non-micelle-forming bile acids increase the biliary excretion of gentamicin. Finally, diflunisal, a fluorinated salicylate wit 1986). Oehler and coworkers (1989) show that non-micelle-forming bile acids increase the biliary excretion of gentamicin. Finally, diflunisal, a fluorinated salicylate with nonsteroidal anti-inflammatory properties that is celle-forming bile acids increase the biliary excretion of
gentamicin. Finally, diflunisal, a fluorinated salicylate
with nonsteroidal anti-inflammatory properties that is
eliminated primarily as ester and ether glucuronid gentamicin. Finally, diflunisal, a fluorinated salicylate
with nonsteroidal anti-inflammatory properties that is
eliminated primarily as ester and ether glucuronides, is
cleared more rapidly by streptozotocin-diabetic rats et al., 1989). It seems from these data that diabetes must eliminated primarily as ester a
cleared more rapidly by strepto:
et al., 1989). It seems from these
affect the activity of various of
these chemicals into the bile.
In spite of these published ef eared more rapidly by streptozotocin-diabetic rats (Lin al., 1989). It seems from these data that diabetes must
fect the activity of various carriers for transport of
see chemicals into the bile.
In spite of these publishe

et al., 1989). It seems from these data that diabetes must
affect the activity of various carriers for transport of
these chemicals into the bile.
In spite of these published effects of diabetes-induced
alterations in the affect the activity of various carriers for transport
these chemicals into the bile.
In spite of these published effects of diabetes-induc
alterations in the biliary excretion of xenobiotics, the
are few epidemiological st these chemicals into the bile.
In spite of these published effects of diabetes-induce
alterations in the biliary excretion of xenobiotics, there
are few epidemiological studies that unequivocally demon
strate that the phar In spite of these published effects of diabetes-induced
alterations in the biliary excretion of xenobiotics, there
are few epidemiological studies that unequivocally demon-
strate that the pharmacodynamics and pharmacokine alterations in the biliary excretion of xenobiotics, the are few epidemiological studies that unequivocally dem strate that the pharmacodynamics and pharmacokine of important drugs are significantly affected. It is known w are few epidemiological studies that unequivocally demostrate that the pharmacodynamics and pharmacokinet of important drugs are significantly affected. It is reproved to the movement of the movement diabetic patients are strate that the pharmacodynamics and pharmacokinetics
of important drugs are significantly affected. It is not
known whether type I insulin-dependent or type II insulin-
independent diabetic patients are idiosyncratically of important drugs are significantly affected. It is not known whether type I insulin-dependent or type II insulin-
independent diabetic patients are idiosyncratically hyper-
responsive or hyporesponsive to any drug treatm known whether type I insulin-dependeer
independent diabetic patients are idioresponsive or hyporesponsive to any
some fashion that suggests a disease-i
ture work must address this concern.

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

VIII. **Effect of Insulin-mimetic Agents on Hepatic Function**

WATKINS ANI
III. **Effect of Insulin-mimetic Agents on Hepatic**
Function
Vanadium salts (Nechay, 1984; Nechay et al., 1985;
lechter, 1990), peroxovanadium compounds (Fantus et **VIII. Effect of Insulin-mimetic Agents on Hepatic**
 Function

Vanadium salts (Nechay, 1984; Nechay et al., 1985;

Shechter, 1990), peroxovanadium compounds (Fantus et al., 1989; Leighton et al., 1991), selenite (Ezaki, **Function**
Function
Vanadium salts (Nechay, 1984; Nechay et al., 1985;
Shechter, 1990), peroxovanadium compounds (Fantus et
al., 1989; Leighton et al., 1991), selenite (Ezaki, 1990),
molybdate and tungstate (Goto et al., Function

Vanadium salts (Nechay, 1984; Nechay et al., 1985; to in

Shechter, 1990), peroxovanadium compounds (Fantus et med

al., 1989; Leighton et al., 1991), selenite (Ezaki, 1990), is n

molybdate and tungstate (Goto e Vanadium salts (Nechay, 1984; Nechay et al., 1985; Shechter, 1990), peroxovanadium compounds (Fantus et al., 1989; Leighton et al., 1991), selenite (Ezaki, 1990), implybdate and tungstate (Goto et al., 1992), zinc ion (Sh al., 1989; Leighton et al., 1991), selenite (Ezaki, 1990), $\frac{16}{100}$ molybdate and tungstate (Goto et al., 1992), zinc ion (Shisheva et al., 1992), and chromium (Singh et al., $\frac{1}{100}$ molybdate mimics insulin is 19 molybdate and tungstate (Goto et al., 1992), zinc ion
(Shisheva et al., 1992), and chromium (Singh et al.,
1992) can all exert insulin-like effects in vitro. Although
the mechanism by which vanadate mimics insulin is
ill-d 1992) can all exert insulin-like effects in vitro. Although
the mechanism by which vanadate mimics insulin is
ill-defined, much data support a theory that vanadate
activates glucose metabolism by an insulin-independent
mec the mechanism by which vanadate mimics insulin is
ill-defined, much data support a theory that vanadate
activates glucose metabolism by an insulin-independent
mechanism or by skirting the early events of the insulin-
depen the mechanism by which vanadate mimics insulin is
ill-defined, much data support a theory that vanadate
activates glucose metabolism by an insulin-independent
mechanism or by skirting the early events of the insulin-
depen ill-defined, much
activates glucose r
mechanism or by s
dependent cascade
Shechter, 1990).
Oral administra tivates glucose metabolism by an insulin-independent
echanism or by skirting the early events of the insulin-
pendent cascade (Nechay, 1984; Nechay et al., 1985;
echter, 1990).
Oral administration of orthovanadate partiall

mechanism or by skirting the early events of the inseparation of scheme as
cade (Nechay, 1984; Nechay et al., Shechter, 1990).
Oral administration of orthovanadate partially
malizes blood glucose concentrations in streptoz dependent cascade (Nechay, 1984; Nechay et al., 1985;
Shechter, 1990).
Oral administration of orthovanadate partially nor-
malizes blood glucose concentrations in streptozotocin-
induced diabetic rats (Brichard et al., 198 Shechter, 1990).

Oral administration of orthovanadate partially nor-

malizes blood glucose concentrations in streptozotocin-

induced diabetic rats (Brichard et al., 1988; Cam et al.,

1993; Challiss et al., 1987; Heylig Oral administration of orthovanadate partially n
malizes blood glucose concentrations in streptozotoc
induced diabetic rats (Brichard et al., 1988; Cam et a
1993; Challiss et al., 1987; Heyliger et al., 1985; I
gazhenthi malizes blood glucose concentrations in streptozotocin-
induced diabetic rats (Brichard et al., 1988; Cam et al.,
1993; Challiss et al., 1987; Heyliger et al., 1985; Pu-
gazhenthi and Khandelwal, 1990) or in insulin-resist induced diabetic rats (Brichard et al., 1988; Cam et al., 1993; Challiss et al., 1987; Heyliger et al., 1985; Pugazhenthi and Khandelwal, 1990) or in insulin-resistant diabetic ob/ob mice (Brichard et al., 1990) and resto 1993; Challiss et al., 1987; Heyliger et al., 1985; Pugazhenthi and Khandelwal, 1990) or in insulin-resistant
diabetic ob/ob mice (Brichard et al., 1990) and restores
cholesterol, phospholipid, and triglyceride levels in
 diabetic ob/ob mice (Brichard et al., 1990) and restores the cholesterol, phospholipid, and triglyceride levels in plasma lipoprotein fractions to near normal levels in (Sekar and Govindasamy, 1991). Treatment of diabetic cholesterol, phospholipid, and triglyceride levels in plasma lipoprotein fractions to near normal levels (Sekar and Govindasamy, 1991). Treatment of diabetic rats with vanadyl sulfate augments peripheral glucose utilizatio plasma lipoprotein fractions to near normal levels
(Sekar and Govindasamy, 1991). Treatment of diabetic
rats with vanadyl sulfate augments peripheral glucose
utilization, independently of insulin-receptor kinase ac-
tivity (Sekar and Govindasamy, 1991). Treatment of diabetic rats with vanadyl sulfate augments peripheral glucose utilization, independently of insulin-receptor kinase activity (Venkatesan et al., 1991). Moreover, oral vanadate rats with vanadyl sulfate augments peripheral glu
utilization, independently of insulin-receptor kinas
tivity (Venkatesan et al., 1991). Moreover, oral vana
therapy over 2 months reduces glycosylated hemogl
levels, activat utilization, independently of insulin-receptor kinase activity (Venkatesan et al., 1991). Moreover, oral vanadate
therapy over 2 months reduces glycosylated hemoglobin
levels, activates glycolysis, and depresses gluconeoge tivity (Venkatesan et al., 1991). Moreover, oral vanadate
therapy over 2 months reduces glycosylated hemoglobin
levels, activates glycolysis, and depresses gluconeogen-
esis in streptozotocin-induced diabetic rats (Sekar e therapy over 2 months reduces glycosylated hemoglo
levels, activates glycolysis, and depresses gluconeog
esis in streptozotocin-induced diabetic rats (Sekar et
1990). Lipoprotein lipase and hepatic lipase activii
are corre levels, activates glycolysis, and depresses glucon
esis in streptozotocin-induced diabetic rats (Sekai
1990). Lipoprotein lipase and hepatic lipase ac
are corrected toward normal values after oral ac
tration of sodium meta esis in streptozotocin-induced diabetic rats (Sekar et al., 1990). Lipoprotein lipase and hepatic lipase activities are corrected toward normal values after oral administration of sodium metavanadate to streptozotocin-diab 1990). Lipoprotein lipase and hepatic lipase activities here corrected toward normal values after oral administration of sodium metavanadate to streptozotocin-diabetic rats (Levy and Bendayan, 1991). These studies Kn prov are corrected toward normal values after oral adminitration of sodium metavanadate to streptozotocin-dibetic rats (Levy and Bendayan, 1991). These studiprovide evidence that dietary orthovanadate can asomewhat effective as tes. tic rats (Levy and Bendayan, 1991). These study or evidence that dietary orthovanadate can mewhat effective as an oral agent for treating din s.
The first study to examine whether oral orthovite therapy normalizes diabetes

provide evidence that dietary orthovanadate can be toxis somewhat effective as an oral agent for treating diabetes.

The first study to examine whether oral orthovana-

date therapy normalizes diabetes-induced alterations somewhat effective as an oral agent for treating diabetes.

the first study to examine whether oral orthovana-

date therapy normalizes diabetes-induced alterations in

hepatobiliary function notes that the increased total tes.
The first study to examine whether oral orthovana-
date therapy normalizes diabetes-induced alterations in
hepatobiliary function notes that the increased total and
biliary clearances of rose bengal in diabetic rats The first study to examine whether oral orthovana-
date therapy normalizes diabetes-induced alterations in
hepatobiliary function notes that the increased total and
biliary clearances of rose bengal in diabetic rats 4 week date therapy normalizes diabetes-induced alteration
hepatobiliary function notes that the increased total
biliary clearances of rose bengal in diabetic rats 4 we
after streptozotocin treatment are not reversed by
thovanada hepatobiliary function notes that the increased total an
biliary clearances of rose bengal in diabetic rats 4 week
after streptozotocin treatment are not reversed by or
thovanadate therapy. Moreover, oral sodium orthovana
 biliary clearances of rose bengal in diabetic rats 4 weeks
after streptozotocin treatment are not reversed by or-
thovanadate therapy. Moreover, oral sodium orthovana-
date does not completely reverse diabetes-induced alte after streptozotocin treatment are not reversed by orthovanadate therapy. Moreover, oral sodium orthovanadate does not completely reverse diabetes-induced alterations of basal bile acid excretion (Watkins et al., 1993). Fi thovanadate therapy. Moreover, oral sodium orthovana-
date does not completely reverse diabetes-induced alter-
ations of basal bile acid excretion (Watkins et al., 1993).
Finally, bile formation is not reduced, suggesting date does not completely reverse diabetes-induced alte
ations of basal bile acid excretion (Watkins et al., 1993
Finally, bile formation is not reduced, suggesting tha
the dose of orthovanadate was too low to compromis
hep ations of basal bile acid excretion (Watkins et al., 1993).
Finally, bile formation is not reduced, suggesting that
the dose of orthovanadate was too low to compromise
hepatic perfusion and oxygen consumption. The vana-
da Finally, bile formation is not reduced, suggesting that
the dose of orthovanadate was too low to compromise
hepatic perfusion and oxygen consumption. The vana-
date-induced reduction in bile flow rate is apparently
owing t the dose of orthovanadate was too low to compromise
hepatic perfusion and oxygen consumption. The vana-
date-induced reduction in bile flow rate is apparently
owing to hypoxia caused by the direct action on vascular
mooth hepatic perfusion and oxygen consumption. The vana-
date-induced reduction in bile flow rate is apparently wowing to hypoxia caused by the direct action on vascular no
smooth muscle resulting in decreased vascular perfusi date-induced reduction in bile flow rate is apparently wowing to hypoxia caused by the direct action on vascular nesselves about the smooth muscle resulting in decreased vascular perfusion is and not to any inhibition of owing to hypoxia caused by the direct action on vasos
smooth muscle resulting in decreased vascular perfu
and not to any inhibition of Na⁺-K⁺-ATPase (Thon
and Larsen, 1982b), an enzyme involved in production
the bile a nooth muscle resulting in decreased vascular perfusion of not to any inhibition of Na⁺-K⁺-ATPase (Thoms d Larsen, 1982b), an enzyme involved in production e bile acid-independent fraction of bile secretion.
Recent wor

and not to any inhibition of Na⁺-K⁺-ATPase (Thomsend Larsen, 1982b), an enzyme involved in production
the bile acid-independent fraction of bile secretion.
Recent work demonstrates that an alternative biosy
thetic pat and Larsen, 1982b), an enzyme involved in production of
the bile acid-independent fraction of bile secretion. i
Recent work demonstrates that an alternative biosyn-
thetic pathway of cholic acid via 3α , 7 α -dihydroxy

of oral vanadate treatment partially cancels the in-
creased cholic acid production in diabetic rats similarly COM SANDERS
of oral vanadate treatment partially cancels the in-
creased cholic acid production in diabetic rats similarly
to insulin therapy (Kimura et al., 1992). Although the EXANDERS
of oral vanadate treatment partially cancels the in-
creased cholic acid production in diabetic rats similarly
to insulin therapy (Kimura et al., 1992). Although the
mechanism by which vanadate alters bile acid me mechanism by analysis and the increased cholic acid production in diabetic rats similarly to insulin therapy (Kimura et al., 1992). Although the mechanism by which vanadate alters bile acid metabolism is not fully understo of oral vanadate treatment partially cancels the in-
creased cholic acid production in diabetic rats similarly
to insulin therapy (Kimura et al., 1992). Although the
mechanism by which vanadate alters bile acid metabolism
 creased cholic acid production in diabetic rats similarly
to insulin therapy (Kimura et al., 1992). Although the
mechanism by which vanadate alters bile acid metabolism
is not fully understood, vanadate does not increase s to insulin therapy (Kimura et al., 1992). Alection
mechanism by which vanadate alters bile acid
is not fully understood, vanadate does not inca
insulin concentrations and is not functioning
lin-dependent pathway (Ogura et echanism by which vanadate alters bile acid metabo
not fully understood, vanadate does not increase se
sulin concentrations and is not functioning via an i
--dependent pathway (Ogura et al., 1991).
Unfortunately, all forms

is not fully understood, vanadate does not increase serum
insulin concentrations and is not functioning via an insu-
lin-dependent pathway (Ogura et al., 1991).
Unfortunately, all forms of oral vanadate (metavana-
date, or insulin concentrations and is not functioning via an insu-
lin-dependent pathway (Ogura et al., 1991).
Unfortunately, all forms of oral vanadate (metavana-
date, orthovanadate or vanadyl sulfate) elicit toxicity in
rats th lin-dependent pathway (Ogura et al., 1991).
Unfortunately, all forms of oral vanadate (metavana-
date, orthovanadate or vanadyl sulfate) elicit toxicity in
rats that ranges from decreased weight gain and in-
creased serum Unfortunately, all forms of oral vanadate (metavana-
date, orthovanadate or vanadyl sulfate) elicit toxicity in
rats that ranges from decreased weight gain and in-
creased serum concentrations of urea and creatinine to
dea date, orthovanadate or vanadyl sulfate) elicit toxicity is
rats that ranges from decreased weight gain and in
creased serum concentrations of urea and creatinine t
death (Domingo et al., 1991; Mongold et al., 1990). Use c
 rats that ranges from decreased weight gain and increased serum concentrations of urea and creatinine to death (Domingo et al., 1991; Mongold et al., 1990). Use of vanadium salts as adjuncts to insulin therapy for insulincreased serum concentrations of urea and creatinine to
death (Domingo et al., 1991; Mongold et al., 1990). Use of
vanadium salts as adjuncts to insulin therapy for insu-
lin-dependent diabetic patients must carefully balan death (Domingo et al., 1991; Mongold et al., 1990). Use of vanadium salts as adjuncts to insulin therapy for insulin-dependent diabetic patients must carefully balance
therapeutic versus toxic actions of the agents. The ch vanadium salts as adjuncts to insulin therapy for insulin-dependent diabetic patients must carefully balance
therapeutic versus toxic actions of the agents. The che-
lator Tiron seems to ameliorate the toxic effects of van lin-dependent diabetic patients must care
therapeutic versus toxic actions of the age
lator Tiron seems to ameliorate the toxic e
adate and to diminish the accumulation of
kidney and bone (Domingo et al., 1992).
Moreover, erapeutic versus toxic actions of the agents. The che-
tor Tiron seems to ameliorate the toxic effects of van-
ate and to diminish the accumulation of vanadium in
dney and bone (Domingo et al., 1992).
Moreover, the effect

adate and to diminish the accumulation of vanadium in
kidney and bone (Domingo et al., 1992).
Moreover, the effect of combined therapies (insulin
plus vanadate) on hepatic function has yet to be ascer-
tained. Low-dose van adate and to diminish the accumulation of vanadium in
kidney and bone (Domingo et al., 1992).
Moreover, the effect of combined therapies (insulin
plus vanadate) on hepatic function has yet to be ascer-
tained. Low-dose van kidney and bone (Domingo et al., 1992).
Moreover, the effect of combined therapies (insulin
plus vanadate) on hepatic function has yet to be ascer-
tained. Low-dose vanadate plus insulin therapy may-
prove to be beneficial Moreover, the effect of combined therapies (insulin
plus vanadate) on hepatic function has yet to be ascer-
tained. Low-dose vanadate plus insulin therapy may
prove to be beneficial; therefore, continued study is war-
rant plus vanadate) on hepatic function has yet to be ascentained. Low-dose vanadate plus insulin therapy m
prove to be beneficial; therefore, continued study is warented. The efficacy of combining other insulinomime
agents wit tained. Low-dose vanadate plus insulin therapy may
prove to be beneficial; therefore, continued study is war-
ranted. The efficacy of combining other insulinomimetic
agents with insulin also needs to be examined. Combi-
na prove to be beneficial; therefore, continued study is warranted. The efficacy of combining other insulinomimetic agents with insulin also needs to be examined. Combination of sodium orthovanadate with ascorbic acid could h ranted. The efficacy of combinine
agents with insulin also needs
nation of sodium orthovanadate
have beneficial effects by redu
diabetes (Young et al., 1992). In orthovanadate with asceffects by reducing oxidency of the set of the USA.
IX. Future Directions tv of both diabetes mell have beneficial effects by reducing oxidative stress in
diabetes (Young et al., 1992).
IX. Future Directions
The complexity of both diabetes mellitus as well as
hepatic biochemistry and physiology contribute to the

diabetes (Young et al., 1992).
 IX. Future Directions

The complexity of both diabetes mellitus as well as

hepatic biochemistry and physiology contribute to the

difficult task of understanding the effects of insulin de IX. Future Directions
The complexity of both diabetes mellitus as well as
hepatic biochemistry and physiology contribute to the
difficult task of understanding the effects of insulin de-
ficiency on biotransformation and b ficiency on biotransformation and biliary excretion. The complexity of both diabetes mellitus as well as
hepatic biochemistry and physiology contribute to the
difficult task of understanding the effects of insulin de
ficiency on biotransformation and biliary excretion
Knowin hepatic biochemistry and physiology contribute to t
difficult task of understanding the effects of insulin c
ficiency on biotransformation and biliary excretic
Knowing that both alloxan and streptozotocin are cy
toxic, we difficult task of understanding the effects of insulin deficiency on biotransformation and biliary excretion.
Knowing that both alloxan and streptozotocin are cytotoxic, we need to ascertain what, if any, ultrastructural c ficiency on biotransformation and biliary excretion.
Knowing that both alloxan and streptozotocin are cyto-
toxic, we need to ascertain what, if any, ultrastructural
changes occur and how these relate to the observed
funct Knowing that both alloxan and streptozotocin are cyto-
toxic, we need to ascertain what, if any, ultrastructural
changes occur and how these relate to the observed
functional differences. Because many metabolic en-
zymes w toxic, we need to ascertain what, if any, ultrastructure
changes occur and how these relate to the observ
functional differences. Because many metabolic e
zymes whose functions are influenced by diabetes resi
in the micros changes occur and how these relate to the observed
functional differences. Because many metabolic en-
zymes whose functions are influenced by diabetes reside
in the microsomal fraction, changes in glycogen, choles-
terol, functional differences. Because many metabolic entry express whose functions are influenced by diabetes residentian the microsomal fraction, changes in glycogen, chole terol, and phospholipid levels could influence either zymes whose functions are influenced by diabetes reside in the microsomal fraction, changes in glycogen, choles terol, and phospholipid levels could influence either transport mechanisms or enzymes bound in the membranes o malemma. terol, and phospholipid levels could influence either
transport mechanisms or enzymes bound in the mem-
branes of mitochondria, endoplasmic reticulum, or plas-
malemma.
Whereas specific alterations in phase I cytochrome
P4

transport mechanisms or enzymes bound in the mem-
branes of mitochondria, endoplasmic reticulum, or plas-
malemma.
Whereas specific alterations in phase I cytochrome
P450 isozymes have been demonstrated, similar studies
on branes of mitochondria, endoplasmic reticulum, or plas-
malemma.
Whereas specific alterations in phase I cytochrome
P450 isozymes have been demonstrated, similar studies
on the expression of specific phase II isozymes of N malemma.

Whereas specific alterations in phase I cyt

P450 isozymes have been demonstrated, similar

on the expression of specific phase II isozym

acetyltransferase, the UDP-glucuronosyltran

glutathione S-transferases, Whereas specific alterations in phase I cytochrome P450 isozymes have been demonstrated, similar studies
on the expression of specific phase II isozymes of N-
acetyltransferase, the UDP-glucuronosyltransferases,
glutathion on the expression of specific phase II isozymes of N-
acetyltransferase, the UDP-glucuronosyltransferases,
glutathione S-transferases, or sulfotransferases are
warranted. No one has yet proven whether restoration of
normog acetyltransferase, the UDP-glucuronosyltransferases,
glutathione S-transferases, or sulfotransferases are
warranted. No one has yet proven whether restoration of
normoglycemia, suppression of glucagon secretion or
simply e glutathione S-transferases, or sulfotransferases are
warranted. No one has yet proven whether restoration of
normoglycemia, suppression of glucagon secretion of
simply elevation of plasma insulin concentrations is the
acti arranted. No one has yet proven whether restoration of
rrmoglycemia, suppression of glucagon secretion or
mply elevation of plasma insulin concentrations is the
tive factor in the normalization of enzyme activities.
Applic normoglycemia, suppression of glucagon secretion or
simply elevation of plasma insulin concentrations is the
active factor in the normalization of enzyme activities.
Applicability of short-term and long-term chemically
ind

simply elevation of plasma insulin concentrations is the active factor in the normalization of enzyme activities.
Applicability of short-term and long-term chemically induced animal models for human diabetes needs to be de active factor in the normalization of enzyme activities.
Applicability of short-term and long-term chemically
induced animal models for human diabetes needs to be
determined. The cholestasis that is seen in short-term
stre induced animal models for human diabetes needs to be determined. The cholestasis that is seen in short-term streptozotocin-induced diabetic rats but is absent in chronic long-term diabetic rats is not prevalant in hu-

aspet

DIABETES MELLITUS AN
man diabetics. Data are needed to unequivocally dem-
onstrate whether the cholestasis seen the first few day DIABETES MELLITUS AND HE
man diabetics. Data are needed to unequivocally dem-
onstrate whether the cholestasis seen the first few days
after streptozotocin administration is owing to the hep-DIABETES MELLITUS ANI
man diabetics. Data are needed to unequivocally dem-
onstrate whether the cholestasis seen the first few days
after streptozotocin administration is owing to the hep-
atotoxic effects of the diabetoge man diabetics. Data are needed to unequivocally demonstrate whether the cholestasis seen the first few days after streptozotocin administration is owing to the hepatotoxic effects of the diabetogen and whether effects obse man diabetics. Data are needed to unequivocally onstrate whether the cholestasis seen the first few after streptozotocin administration is owing to the atotoxic effects of the diabetogen and whether ef observed a month or onstrate whether the cholestasis seen the first few days
after streptozotocin administration is owing to the hep-
atotoxic effects of the diabetogen and whether effects
observed a month or more after diabetogen administraafter streptozotocin administration is owing to the hepatotoxic effects of the diabetogen and whether effects observed a month or more after diabetogen administration are owing to insulin-deficiency and not to a delayed to atotoxic effects of the diabetogen and whether effects
observed a month or more after diabetogen administra-
tion are owing to insulin-deficiency and not to a delayed
toxic response to the diabetogen. Use of one or several observed a month or more after diabetogen administration are owing to insulin-deficiency and not to a delayed
toxic response to the diabetogen. Use of one or several and
other animal models for both insulin-dependent and tion are owing to in
toxic response to the
other animal model
sulin-independent
solve this problem.
Besides laborato other animal models for both insulin-dependent and insulin-independent diabetes (Shafrir, 1990) might help
solve this problem.
Besides laboratory animals, additional work must sulin-independent diabetes (Shafrir, 1990) might help

evaluate drug disposition in diabetic patients. Moreover,
studies should distinguish between type I insulin-depen-
dent and type II insulin-independent diabetes and also
between patients controlled on low versus high doses solve this problem.

Besides laboratory animals, additional work must

evaluate drug disposition in diabetic patients. Moreover,

studies should distinguish between type I insulin-dependent

dent and type II insulin-indep Besides laboratory animals, additional work must A ^M
evaluate drug disposition in diabetic patients. Moreover,
studies should distinguish between type I insulin-depen-
dent and type II insulin-independent diabetes and studies should distinguish between type I insulin-dependent and type II insulin-independent diabetes and also between patients controlled on low versus high doses of insulin. The potential linkages between hepatic choleste studies should distinguish between type I insulin-dependent and type II insulin-independent diabetes and also $\frac{PR}{AND}$
between patients controlled on low versus high doses of insulin. The potential linkages between hepat dent and type II insulin-independent diabetes and also
between patients controlled on low versus high doses of
insulin. The potential linkages between hepatic choles-
terol metabolism with cholelithiasis and gallstones and between patients controlled on low versus high doses of
insulin. The potential linkages between hepatic choles-
terol metabolism with cholelithiasis and gallstones and
with atheroma must also be discerned. Finally, studies insulin. The potential linkages between hepatic choles-
terol metabolism with cholelithiasis and gallstones and
with atheroma must also be discerned. Finally, studies
in chronic diabetics with neuropathy may enable de-
scr terol metabolism with cholelithiasis and gallstones and
with atheroma must also be discerned. Finally, studies
in chronic diabetics with neuropathy may enable de-
scription of problems in hepatobiliary function, deriving
f with atheroma must also be discerned. Finally, studin chronic diabetics with neuropathy may enable description of problems in hepatobiliary function, derivity from neuropathy, that are superimposed upon initi-
low-dose ins in chronic diabetics with neuropathy may enable description of problems in hepatobiliary function, deriving from neuropathy, that are superimposed upon initial individual behavior dose insulin effects. Obviously, the impa scription of problems in hepatobiliary function, deriving
from neuropathy, that are superimposed upon initial
low-dose insulin effects. Obviously, the impact of multi-
ple organ systems on hepatobiliary function must be
de from neuropa
low-dose insul
ple organ sys
determined in
of this work.
In summary **IN SURVER SURVER SURVER SURVER SURVER SURVER SURVER SURVEY AND THE SURVER SURVEY AND THE MANUS WEIGHT AND THE MANUS CONTROLLATION OF SURVEY AND SURVEY AND SURVER SURVEY AND SURVEY AND SURVEY AND LOCAL THE MANUS OF SURVEY**

ple organ systems on hepatobiliary function must be
determined in order to establish the full clinical context
of this work.
In summary, it is still difficult to explain the many
alterations in hepatic uptake, metabolism a determined in order to establish the full clinical context
of this work.
In summary, it is still difficult to explain the many
alterations in hepatic uptake, metabolism and biliary
excretion observed in diabetic animals an of this work.
In summary, it is still difficult to explain the many
alterations in hepatic uptake, metabolism and biliary
excretion observed in diabetic animals and humans.
Mechanisms that have been suggested include chang In summary, it is still difficult to explain the many
alterations in hepatic uptake, metabolism and biliary
excretion observed in diabetic animals and humans.
Mechanisms that have been suggested include changes
in glycogen alterations in hepatic uptake, metabolism and biliary
excretion observed in diabetic animals and humans.
Mechanisms that have been suggested include changes
in glycogen, cyclic adenosine monophosphate (Ackerman
and Leibman excretion observed in diabetic animals and human
Mechanisms that have been suggested include change
in glycogen, cyclic adenosine monophosphate (Ackerma
and Leibman, 1977) and growth hormone (Yamazoe e
al., 1989a, b) level Mechanisms that have been suggested include changes
in glycogen, cyclic adenosine monophosphate (Ackerman
and Leibman, 1977) and growth hormone (Yamazoe et
al., 1989a, b) levels, ketosis and glucose starvation (Bell-
ward in glycogen, cyclic adenosine monophosphate (Ackerman
and Leibman, 1977) and growth hormone (Yamazoe et
al., 1989a, b) levels, ketosis and glucose starvation (Bell-
ward et al., 1988; Hong et al., 1987; Johansson et al.,
1 and Leibman, 1977) and growth hormone (Yamazoe et Arwes, M. S., AND HEGNER, D.: Role of inorganic electrolytes in bile acid-
al., 1989a, b) levels, ketosis and glucose starvation (Bell-
al., 1988, Hong et al., 1987; Johann ward et al., 1988; Hong et al., 1987; Johansson et al., 1986), hyperglycemia and hypoinsulinemia (Marin et al., 1988). In addition, thyroid hormone and insulin may actually function in concert in some areas or as antago-
n ward et al., 1988; Hong et al., 1987; Johansson et al., 1986), hyperglycemia and hypoinsulinemia (Marin et al., 1988). In addition, thyroid hormone and insulin may actually function in concert in some areas or as antagonis 1986), hyperglycemia and hypoinsulinemia (Marin et al., 1988). In addition, thyroid hormone and insulin may ARIAN actually function in concert in some areas or as antagonic or monal control of gene expression (Chan et al. al., 1988). In addition, thyroid hormone and insulin may
actually function in concert in some areas or as antago-
nists analagous to glucagon in other areas of the hor-
monal control of gene expression (Chan et al., 1988). actually function in concert in some areas or as antago-
mists analagous to glucagon in other areas of the hor-
monal control of gene expression (Chan et al., 1988). No
single mechanism satisfactorily accounts for all obmists analagous to glucagon in other areas of the
monal control of gene expression (Chan et al., 1988
single mechanism satisfactorily accounts for al
served changes in people with diabetes, however, an
unified explanation monal control of gene expression (Chan et al., 1988). No
single mechanism satisfactorily accounts for all ob-
served changes in people with diabetes, however, and no
unified explanation has been proposed. Our understand-
 expression (Chain et al., 1900). No ARIAS, I. M., AND FORGAC, M.: The sinusoidal domain of the plasma membrane
single mechanism satisfactorily accounts for all ob-
served changes in people with diabetes, however, and no ch completed.

equivocal at best, and much research remains to be completed.
 Acknowledgements. The authors would like to express their ap-

preciation of the gracious support of the work performed in our

laboratory provided by the In completed.

Acknowledgements. The authors would like to express their appreciation of the gracious support of the work performed in our

laboratory provided by the Indiana Affiliate and the national Amer-Acknowledgements. The authors would like to express their increasion of the gracious support of the work performed in claboratory provided by the Indiana Affiliate and the national American Diabetes Association. Acknowledgements. T
preciation of the gracic
laboratory provided by t
ican Diabetes Associatio

REFERENCES

- metabolism in the rat. Drug Metab. Dispose. **F. A.:** Protection of B

cells against the effect of alloxan. Toxicol. Lett. 63: 155-164, 1992.

ACKERMAN, D. M. AND LEIBMAN, K. C.: Effect of experimental diabetes on drug

met
- ACKERMAN, D. M. AND LEIBMAN, K. C.: Effect of experimental diabetes on drug metabolism in the rat. Drug Metab. Dispos. 5: 405–410, 1977.
-
- cells against the effect of alloxan. Toxicol. Lett. 63: 155-164, 1992.
ACKERMAN, D. M. AND LEIBMAN, K. C.: Effect of experimental diabetes on drug
metabolism in the rat. Drug Metab. Dispos. 5: 405-410, 1977.
ADACHI, Y., KO YAMAMOTO, T.: ATP-dependent taurocholate transport by rat liver canalic-
ular membrane vesicles. Hepatology 14: 655–659, 1991.
ADLER, R. D., WANNAGAT, F. J., AND OCKNER, R. K.: Bile secretion in selective
biliary obstructi
- EPATOBILIARY FUNCTION
AGIUS, C., AND GIDARI, A. S.: Effect of streptozotocin on the glutathione
S-transferases of mouse liver cytosol. Biochem. Pharmacol. 34: 811–819, 17
S-transferases of mouse liver cytosol. Biochem. Pharmacol. 34: 811–819,
S-transferases of mouse liver cytosol. Biochem. Pharmacol. 34: 811–819,
1985. 1985.
- AGIUS, C., AND GIDARI, A. S.: Effect of streptozotocin on the glutathione
S-transferases of mouse liver cytosol. Biochem. Pharmacol. 34: 811–819,
1985.
AHN, Y. I., KAMBOH, M. I., HAMMAN, R. F., COLE, S. A., AND FERRELL, R. AHN, Y. I., KAMBOH, M. I., HAMMAN, R. F., COLE, S. A., AND FERRELL, R. E.: Two DNA polymorphisms in the lipoprotein lipses gene and their associations with factors related to cardiovascular disease. J. Lipid Res. 34: 421-4 DNA polymorphisms in the lipoprotein lipase gene and their associations
with factors related to cardiovascular disease. J. Lipid Res. 34: 421-428,
1993.
AKNYOSHI, T., UCHIDA, K., TAKASE, H., NOMURA, Y., AND TAKEUCHI, N.: C
-
- lesterol gallstones in alloxan-diabetic mice. J. Lipid Res. 27: 915–924, 1986.
ALDINI, R., RODA, A., MORSELLI-LABATE, A. M., CAPPELLERI, G., RODA, E., AND
BARBARA, L.: Hepatic bile acid uptake: effect of conjugation, hydro AKIYOSHI, T., UCHIDA, K., TAKASE, H., NOMURA, Y., AND TAKEUCHI, N.: Cholesterol gallstones in alloxan-diabetic mice. J. Lipid Res. 27: 915–924, 1986.
ALDINI, R., RODA, A., MORSELLI-LABATE, A. M., CAPPELLERI, G., RODA, E.,
- atocyte Na⁺-dependent bile acid transport protein using monoclonal anti-
bodies. J. Biol. Chem. 263: 8338–8343, 1988.
ANDERSEN, E., HELLSTROM, P., AND HELLSTROM, K.: Cholesterol and bile acid
metabolism in middle-aged di
-
- hodies. J. Biol. Chem. 263: 8338-8343, 1988.

nonketotics J. Biol. Chem. 263: 8338-8343, 1988.

metabolism in middle-aged diabetics. Diabetes Metab. 12: 261-267, 1986.

metabolism in middle-aged diabetics. Diabetes Metab. metabolism in middle-aged diabetics. Diabetes Metab. 12: 261-267, 1986.
ANDERSEN, E., HELLSTROM, P., AND HELLSTROM, K.: Cholesterol biosynthesis in
nonketotic diabetics before and during insulin therapy. Diabetes Res. Clin ANDERSEN, E., HELLSTROM, P., AND HELLSTROM, K.: Cholesterol biosynthesis in
nonketotic diabetics before and during insulin therapy. Diabetes Res. Clin.
Pract. 3: 207-214, 1987.
ANDERSEN, E., KARLAGANIS, G., AND SJOVALL, J.
- nonketotic diabetics before and during insulin therapy. Diabetes Res. Clin.

Pract. 3: 207-214, 1987.

ANDERSEN, E., KARLAGANIS, G., AND SJOVALL, J.: Altered bile acid profiles in

duodenal bile and urine in diabetic subje IDERSEN, E., KARLAGANIS, G., AND SJOVALL, J.: Altered bile acid profiles in duodenal bile and urine in diabetic subjects. Eur. J. Clin. Invest. 18: 166–172, 1988.
IDERSEN, S. M., AND GRIFFITHS, L. A.: The metabolism and di
- 172, 1988.

ANDREWS, S. M., AND GRIFFITHS, L. A.: The metabolism and disposition of

1984.

1984.

1984.

1984.

2006.

2006.

2006.

2006.

2006.

2006.

2007.

2007.

2007.

2007.

2007.

2007.

2007.

2007.

2007.

2007
-
- 1984.

1984.

IDREWS, S. M., AND GRIFFITHS, L. A.: Decreased biliary excretion of drugs in

streptozotocin-diabetic rats. Biochem. Soc. Trans. 10: 117, 1982.

G., AND SAKANASHI, M.: Glutathione S-transferases and chlorofor **in streptozotocin-induced** diabetic rats. Biochem. Soc. Trans. 10: 117, 1982.
ANIYA, V., OJIRI, Y., SUNAGAWA, R., MURAKAM, K., ZHENZHONG, G., MIMURA, G., AND SAKANASHI, M.: Glutathione S-transferases and chloroform toxic G., AND SAKANASHI, M.: Glutathione S-transferases and chloroform toxicity
in streptozotocin-induced diabetic rats. Jpn. J. Pharmacol. **50:** 267–269,
1989.
ANWANA, A. B., AND GARLAND, H. O.: Intracellular dehydration in the
- 1989.

1989.

ANWANA, A. B., AND GARLAND, H. O.: Intracellular dehydration in the rat made

diabetic with streptozotocin: effects of infusion. J. Endocrinol. 128: 333-337,

1991.

ANWER, M. S.: Furosemide choleresis in iso
- EWANA, A. B., AND GARLAND, H. O.: Intracellular dehydration in the rat made diabetic with streptozotocin: effects of infusion. J. Endocrinol. 128: 333–337, 1991.
WANA, A. S.: Furosemide choleresis in isolated perfused rat diabetic with streptozotocn: effects of infusion. J. Endocrinol. 128: 333-337,

2991.

ANWER, M. S.: Furosemide choleresis in isolated perfused rat liver: partial

dependency on perfusate sodium and chloride. J. Pharmacol. were, M. S.: Furosemide choleresis in isolated perfused rat liver: partial dependency on perfusate sodium and chloride. J. Pharmacol. Exp. Ther.
235: 313-318, 1985.
1376: A. S.: Anatomy and physiology of bile formation. In
- dependency on perfusate sodium and chloride. J. Pharmacol. Exp. The 235: 313-318, 1985.
235: 313-318, 1985.
WER, M. S.: Anatomy and physiology of bile formation. In Biliary Excretical
WER, M. S.: Anatomy and physiology of **Figure 1992.** ANNER, M. S.: Anatomy and physiology of bile formation. In Biliary Excretion of Drugs and Other Chemicals, ed. by C. P. Siegers and J. B. Watkins III, vol. 8(4), pp. 3–23, Progress in Pharmacology and Clinic of Drugs and Other Chemicals, ed. by C. P. Siegers and J. B. Watkins III, vol. 8(4), pp. 3–23, Progress in Pharmacology and Clinical Pharmacology, Fischer Verlag, Stuttgart, 1991.
ANWER, M. S., AND HEGNER, D.: Importance o
- rat liver. Hepatology and Clinical Pharmacology
Fischer Verlag, Stuttgart, 1991.
ANWER, M. S., AND HEGNER, D.: Importance of solvent drag and diffusion in bil
acid-dependent bile formation: ion substitution studies in isol
- independent bile formation: ion substitution studies in isolated perfuse
in acid-dependent bile formation: ion substitution studies in isolated perfuse
rat liver. Hepatology 2: 580–586, 1982.
wwer, M. S., AND HEGNER, D.: R rat liver. Hepatology 2: 580–586, 1982.

ANWER, M. S., AND HEGNER, D.: Role of inorganic electrolytes in bile ac

independent canalicular bile formation. Am. J. Physiol. 244: G116–G1:

1983a.

ANWER, M. S., AND HEGNER, D.:
- **col. Exp. Ther. 225: 284-290, 1983b.** ANWER, M. S., AND HEGNER, D.: Sodium and chloride dependency of dibucaine-
- **EVER, M. S., AND HEGNER, D.: Sodium and chloride dependency of dibucaineand procaine-induced choleresis in isolated perfused rat livers. J. Pharma-col. Exp. Ther. 225: 284-290, 1983b.**
1045, I. M.: ATP in and around the b col. Exp. Ther. 226: 284-290, 1983b.
ARIAS, I. M.: ATP in and around the bile canaliculus. In Hepatic Transport of
ARIAS, I. M.: ATP in and around the bile canaliculus. In Hepatic Transport of
102-117, Springer Verlag, Ber
-
- of rat hepatocytes contains an amiloride-sensitive Na^+/H^+ antiport. J. Biol.
- ARIAS, I. M., AND FORGAC, M.: The sinusoidal domain of the plasma membrane of rat hepatocytes contains an amiloride-sensitive Na⁺/H⁺ antiport. J. Biol.
Chem. 259: 5406-5408, 1984.
ARIAS, I. M., GHE, M., GAMARTAN, Z., L Chem. 259: 5406-5408, 1984.
ARIAS, I. M., CHE, M., GATMATTAN, Z., LEVEILLE, C., NISHIDA, T., AND ST.
PIERRE, M.: The biology of the bile canaliculuc, 1993. Hepatology 17: 318-
329, 1993.
ARIAS, I. M., JAKOBY, W. B., POPPER
- PIERRE, M.: The biology of the bile canaliculuc, 1993. Hepatology 17: 318–329, 1993.
ARIAS, I. M., JAKOBY, W. B., POPPER, H., SCHACHTER, D., AND SHAFRITZ, D. A.,
EDS.: The Liver: Biology and Pathobiology, 2nd ed., 1377 pp.
- EDS.: The Liver: Biology and Pathobiology, 2nd ed., 1377 pp., Raven Press, New York, 1988.
RISON, R. N., CLACCIO, E. I., GLITZER, M. S., CASSARO, J. A., AND PRUSS, M. P.: Light and electron microscopy of lesions in rats re
- How York, 1988.

ARISON, R. N., CIACCIO, E. I., GLITZER, M. S., CASSARO, J. A., AND PRUSS, M. P.:

Light and electron microscopy of lesions in rats rendered diabetic with

streptozotocin. Diabetes 16: 51-56, 1967.

ANSTN, Experience of mix of streptozotocin. Diabetes 16: 51-56, 1967.
AUSTIN, G. L., JOHNSON, S. M., SHIRES, G. T., AND JONES, R. S.: Effect of
evisceration on insulin-stimulated bile secretion. Surg. Forum 28: 381-382,
BADAWY, A sue possession. Dialonese states (G. T., AND JONES, R. S.: Effect of evisceration on insulin-stimulated bile secretion. Surg. Forum 28: 381–382, 1977.
DAWY, A. B., AND EVANS, M.: Effects of streptozotocin on the concentrat
- oftryptophan pyrolase. Biochem. Surg. Forum 28: 36
1977. DAWY, A. B., AND EVANS, M.: Effects of streptozotocin on the concent
1977. DAWY, A. B., AND EVANS, M.: Effects of streptozotocin on the concent
of tryptophan pyrolas
- EXERIBINATION ISLAMATING AND EVANS, M.: Effects of streptozotocin on the concentrations

ican Diabetes Association.

REFERENCES

REFERENCES

REFERENCES

ABDEL-RAHMAN, M. S., ELRAKHAWY, F. I., AND ISKANDER, F. A.: Protectio 1977.

1977.

BADAWY, A. B., AND EVANS, M.: Effects of streptozotocin on the concentrations

of rat liver nicotinamide adenine dinucleotides (phosphates) and the activity

of tryptophan pyrolase. Biochem. Soc. Trans. 5: 13
	-
	- BALLATORI, N., MOSELEY, R. H., AND BOYER, J. L.: Sodium gradient-dependent
L-glutamate transport is localized to the canalicular domain of liver plasma
membranes. J. Biol. Chem. 261: 6216-6221, 1986.
BALLATORI, N., AND TRU
	-

PHARM
REV

REVIEW

ARMACOLOGI

- WATKINS AND SANDERS

men with non-insulin-dependent diabetes mellitus. Ann. Intern. Med. 117: D'SOUZA, M. J., 1

807-811, 1992.

BELLWARD, G. D., CHANG, T., RODRIGUES, B., MCNEILL, J. H., MAINES, S., Metab. Dispos

RYAN, D men with non-insulin-dependent diabetes mellitus. Ann. Intern. Med. 117:
807–811, 1992.
ILLWARD, G. D., CHANG, T., RODRIGUES, B., MCNEILL, J. H., MAINES, S.,
RYAN, D. E., LEVIN, W., AND THOMAS, P. E.: Hepatic cytochrome P-**143, 1998.**

BELLWARD, G. D., CHANG, T., RODRIGUES, B., MCNEILL, J. H., MAINES, S., RYAN, D. E., LEVIN, W., AND THOMAS, P. E.: Hepatic cytochrome P-450j

induction in the spontaneously diabetic BB rat. Mol. Pharmacol. 33:
-
- induction in the spontaneously diabetic BB rat. Mol. Pharmacol. 33: 140-
143, 1988.
BENNION, L. J., AND GRUNDY, S. M.: Effects of diabetes mellitus on cholesterol
DAJ
metabolism in man. New Eng. J. Med. 296: 1365–1371, 197 **ENOTATION CONSTRATT STATT STATT AND STATT AND STATT STARK, P. D., AND STREMMEL, W.: Hepatcollular under Statton, New York, 1986.**
Progress in Liver Diseases, ed. by H. Popper and 126–144, Grune & Stratton, New York, 1986. metabolism in man. New Eng. J. Med. 296: 1365–1371, 1977.
BERK, P. D., AND STREMMEL, W.: Hepatocellular uptake of organic anions. In
Progress in Liver Diseases, ed. by H. Popper and F. Schaffner, vol. VIII, pp.
125–144, Gr
- Progress in Liver Diseases, ed. by H. Popper and F. Schaffner, vol. VIII, pp
125-144, Grune & Stratton, New York, 1986.
BERR, P. D., POTTER, B. J., AND STREMMEL, W.: Role of plasma membrane
ligand-binding proteins in the h ROCHOLATE: INCREASES HEME CONDUCT THE CLEAR INCREASES heme catabolism and alters the rat. Gastroenterology 88: 397-402, 1985.

BERRY, W. R., KIRSHENBAUM, G., HOLLEN, C., LE, M., AND REICHEN, J.: Taurism the rat. Gastroente
- BERRY, W. R., KIRSHENBAUM, G., HOILIEN, C., LE, M., AND REICHEN, J.: Taurolithocholate increases heme catabolism and alters the clearance of anti-
pyrine in the rat. Gastroenterology 88: 397-402, 1985.
BLITZER, B. L., AND
-
- **9295-9301, 1984.**
 9 9295-9301, 1984.
LOOMER, J. R., BE
albumin on the 1
505-516, 1973.
DUCHIER, I. A. D.: '
59-77, 1980. 9295-9301, 1984.
BLOOMER, J. R., BERK, P. D., VERGALLEN, J., AND BERLIN, N. I.: Influence of
albumin on the hepatic uptake of unconjugated bilirubin. Clin. Sci. 45:
505-516, 1973.
BOUCHIER, I. A. D.: The medical treatment COMER, J. R., BERK,
albumin on the hep
505-516, 1973.
UCHIER, I. A. D.: The
59-77, 1980.
VER, J. L., GRAF, J., A. albumin on the hepatic uptake of unconjugated bilirubin. Clin. Sci. 45:
505–516, 1973.
BOUCHER, I. A. D.: The medical treatment of gallstones. Annu. Rev. Med. 31:
59–77, 1980.
BOYER, J. L., GRAF, J., AND MEIER, P. J.: Hepa
-
- philo 1973.

BOUCHIER, I. A. D.: The medical treatment of gallstones. Annu. Rev. Med. 31:

59–77, 1980.

BOYER, J. L., GRAF, J., AND MEIER, P. J.: Hepatic transport systems regulating

pH_I, cell volume and bile secretion 59-77, 1980.

FS-77, 1980.

FREE R.J. L., GRAF, J., AND MEIER, P. J.: Hepatic transport systems regulating

pH₁, cell volume and bile secretion. Annu. Rev. Physiol. 3415-438, 1992.

Am. J. Physiol. 235: E570-E576, 1978.

-
- BOYER, J. L., GRAF, J., AND MEIER, P. J.: Hepatic transport systems regulating pH₁, cell volume and bile secretion. Annu. Rev. Physiol. 54: 415–438, 1992. BRADLEY, S. E., AND HERZ, R.: Permselectivity of biliary canalicu pH₁, cell volume and bile secretion. Annu. Rev. Physiol. 54: 415–438, 199
MDLEY, S. E., AND HERZ, R.: Permselectivity of biliary canalicular membra
in rats: clearance probe analysis. Am. J. Physiol. 235: E570–E576, 1978. ADLEY, S. E., AND HERZ, R.: Permin rats: clearance probe analysic
CHARD, S. M., OKITOLONDA, W.
CHARD, S. M., OKITOLONDA, W.
ment of glucose homeostasis by
crinol. 123: 2048-2053, 1988.
CCHARD, S. M., BAILEY, C. J., AN
- in rats: clearance probe analysis. Am. J. Physiol. 235: E570–E576, 1978.
BRICHARD, S. M., OKITOLONDA, W., AND HENQUIN, J.-C.: Long term improvement of glucose homeostasis by vanadate treatment in diabetic rats. Endo-
BRICH crinol. 123: 2048–2053, 1988.

BRIGELARD, S. M., BAILEY, C. J., AND HENQUIN, J.-C.: Marked improvement of

glucose homeostasis in idabetic ob/ob mice given oral vanadate. Diabetes

39: 1326–1332, 1990.

BRIGELIUS, R., AND
-
- glucose homeostasis in diabetic ob/ob mice given oral vanadate. Diabetes Te

39: 1326-1332, 1990. DOM

BRIGELIUS, R., AND ANWER, M. S.: Increased biliary GSSG-secretion and loss of The

hepatic glutathione in isolated per Hepatic glutathione in isolated perfused rat lever after paraquat treatment.

Res. Commun. Clin. Pathol. Pharmacol. 31: 493-502, 1981.

ISCHER, H. P., FRICKER, G., GEROK, W., KRAMER, W., KURZ, G., MULLER, M.,

AND SCHNEIDE hepatic glutathione in isolated perfused rat lever after paraquat treatment.
Res. Commun. Clin. Pathol. Pharmacol. 31: 493-502, 1981.
BUSCHER, H. P., FRICKER, G., GEROK, W., KRAMER, W., KURZ, G., MULLER, M.,
AND SCHNEIDER,
- CAFLISCH, C., ZIMMERLI, B., HUGENTOBLER, G., AND MEIER, P. J.: pH gradient driven cholate uptake into rat liver plasma membrane vesicles represents nonionic diffusion rather than a carrier mediated process. Biochim. Biophy nomonic diffusion rather than a carrier mediated process. Biochime. Biometric windler, and U. Beisiegel, pp. 189–199, Springer, New York, 1986.
CAFLISCH, C., ZIMMERLI, B., HUGENTOBLER, G., AND MEIER, P. J.: pH gradient
dri
-
- alcoholic and diabetic and control subjects. Clin. Sci. (Lond.) 65: 645-652, 1983.
 CAM, M. C., PEDERSON, R. A., BROWNSEY, R. W., AND MCNEILL, J. H.: Long-

term effectiveness of oral vanadyl sulphate in streptozotocin-d
- CARNOVALE, C. E., AND RODRIGUEZ-GARAY, E. A.: Reversible impairment of alcoholic and diabetic and control subjects. Clin. Sci. (Lond.) 65: 645-652,

CAM, M. C., PEDERSON, R. A., BROWNSEY, R. W., AND MCNEILL, J. H.: Long-

term effectiveness of oral vanadyl sulphate in streptozotocin-diabetic Form effectivenes
Diabetolog. 36: 2
RNOVALE, C. E.,
hepatobiliary fun
248–250, 1984.
RNOVALE, C. E., N CARNOVALE, C. E., AND RODRIGUEZ-GARAY, E. A.: Reversible impairment of hepatobiliary function induced by streptozotocin in the rat. Experientia 40:
248-250, 1984.
CARNOVALE, C. E., MARINELLI, R. A., AND RODRIGUEZ-GARAY, E.
- 248-250, 1984.

CARNOVALE, C. E., MARINELLI, R. A., AND RODRIGUEZ-GARAY, E. A.: Toxic effect GARAY of streptozotocin on the biliary secretion of nicotinamide-treated rats. Toxicly

col. Lett. 38: 259-265, 1987.

CARNOVALE,
- RNOVALE, C. E., MARINELLI, R. A., AND RODRIGUEZ-GARAY, E. A.: Toxic effect of streptozotocin on the biliary secretion of nicotinamide-treated rats. Toxicol. Lett. 36: 259–265, 1987.

RNOVALE, C. E., MARINELLI, R. A. AND RO CARNOVALE, C. E., MARINELLI, R. A. AND RODRIGUEZ-GARAY, E. A.: Bile flow
decrease and altered bile composition in streptozotocin-treated rats. Bio-
charnocal. 35: 2625-2628, 1986.
CARNOVALE, C. E., ROMA, M. G., MONTI, J. A STUDIES ON THE MECHANIS ON THE MECHANIS ON THE MECHANIS ON THE MECHANIS ON A BILE decrease and altered bile composition in streptozotocin-treated rats. Biochem. Pharmacol. 35: 2625-2628, 1986.

Studies on the mechanism of
-
- CARNOVALE, C. E., ROMA, M. G., MONTI, J. A., AND RODRIGUEZ-GARAY, E. A.: DiMUD.

Studies on the mechanism of bile salt-independent bile flow impairment in

streptozotocin-induced hepatotoxicity. Toxicol. 68: 207–215, 1991. **EXERVALLE, C. E., CATANIA, V. A., MONTI, J. A., AND CARRILLO, M. C.: Differential effects of blood insulin levels on microsomal enzyme activities from multiple that the periodic issues of male rats. Can. J. Physiol. Pharm** ential effects of blood insulin levels on microsomal enzyme activities from
hepatic and extrahepatic tissues of male rats. Can. J. Physiol. Pharmacol. 1
70: 727–731, 1992.
BAYLON, N.. CABARROU, A., ANCIELLO, N., DORIA, I.,
- enam crocost of andexir and extraheptic tissues of male rats. C
T0: 727–731, 1992.
DOLA, N., CABARROU, A., ANCIELLO, N., DORIA, I.
BAYLON, N.: The liver in human diabetes, concerned and
enzymes. Acta Diabet. Lat. 12: 263–2
- TO: 727-731, 1992.
CEDOLA, N., CABARROU, A., ANCIELLO, N., DORIA, I., PONCE DE LEON, H., AND ERLI
BAYLON, N.: The liver in human diabetes, concentration of some induced
I. enzymes. Acta Diabet. Lat. 12: 263-271, 1975.
CHAL BAYLON, N.: The liver in human diabetes, concentrations, R. A. J., Lexisment, B., LozismAn, F. J., LozismAn, F. J., LozismAn, F. NEWSHOLME, E. A.: Effects of chronic administration the sensitivity of glycolysis and glycoge enzymes. Acta Diabet. Lat. 12: 263–271, 1975.
CHALLISS, R. A. J., LEIGHTON, B., LOZEMAN, F. J., BUDOHOSKI, L., AND
NEWSHOLME, E. A.: Effects of chronic administration of vanadate to the rat
on the sensitivity of glycolysis CHALLISS, R. A. J., LEIGHTON, B., LOZEMAN, F. J., BUDOHOSKI, L., AND EVANS, D. A. P.: N-Acetyltransferase. In Pharmacogenetics of Drug Metabo-NEWSHOLME, E. A.: Effects of chronic administration of vanadate to the rate iism insulin. Biochem. Pharmacol. 36: 357-361, 1987.
- NEWSHOLME, E. A.: Effects of chronic administration of vanadate to the rat
on the sensitivity of glycolysis and glycogen synthesis in skeletal muscle to
insulin. Biochem. Pharmacol. 36: 357–361, 1987.
HAN, L., LI, W.-H., A CHAN, L., LI, W.-H., AND TANIMURA, M.: Hormonal control of gene expression. In The Liver: Biology and Pathobiology, 2nd Ed., ed. by I. M. Arias, W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shafritz, pp. 103–130, Raven
- CHAWALIT, K., SRETARUGSA, P., AND THITHAPANDHA, A.: Comparative effects of diabetogenic agents on hepatic drug metabolism. Drug Metab. Dispos. 10:
81-86, 1982.
Biochemistry of bile secretion. Biochem. J. 244: 249-261, 1987 CHAWALIT, K., SRETARUGSA, P., AND THITHAPANDHA, A.: Comparative effects of diabetogenic agents on hepatic drug metabolism. Drug Metab. Dispos. 10: 81–86, 1982.
COLEMAN, R.: Biochemistry of bile secretion. Biochem. J. 244:
-
- EXTRY SANDERS
D'Souza, M. J., Solomon, H. M., Fowler, L. C., and Pollock, S. H.: Phar-
macokinetics of cyclosporin in streptozotocin-induced diabetic rats. Dru SANDERS
SOUZA, M. J., SOLOMON, H. M., FOWLER, L. C., AND POLLOCK, S. H.: Phar-
macokinetics of cyclosporin in streptozotocin-induced diabetic rats. Drug
Metab. Dispos. 16: 778–780, 1988. METAB. Dispos. **16: 778-780, 1988.** I. C., AND POLLOCK, S. H.: Pharmacokinetics of cyclosporin in streptozotocin-induced diabetic rats. Drug Metab. Dispos. 16: 778-780, 1988.
DAINTITH, H., STEVENSON, I. H., AND O'MALLEY, K
- macokinetics of cyclosporin in streptozotocin-induced diabetic rats. Drug Metab. Dispos. 16: 778-780, 1988.
DAINTITH, H., STEVENSON, I. H., AND O'MALLEY, K.: Influence of diabetes mellitus on drug metabolism in man. Int. J INTITH, H., STEVENSON, I. H., AND O'MALLEY, K.: Influence of diamellitus on drug metabolism in man. Int. J. Clin. Pharmacol. Biophari 55–58, 1976.
155–58, 1976.
JANI, R. M., AND KAYYALI, S. Y.: The biotransformation of ace
-
- mellitus on drug metabolism in man. Int. J. Clin. Pharmacol. Biopharm. 18:
55-58, 1976.
DAJANI, R. M., AND KAYYALI, S. Y.: The biotransformation of acetophenetidin in
the alloran diabetic rabbit. Comp. Gen. Pharmacol. 4: 2
- DANG, A. Q., FAAS, F. H., LEE, J. A., AND CARTER, W. J: Altered fatty acid composition in the plasma, platelets, and aorta of the streptozotocin-induced diabetic rat. Metab. Clin. Exper. 37: 1065-1072, 1988. physiological disposition of acetophenetidin by the dia
Gen. Pharmacol. 5: 1–9, 1974.
NG, A. Q., FAAS, F. H., LEE, J. A., AND CARTER, W. J.
composition in the plasma, platelets, and aorta of the stre
diabetic rat. Metab. C Gen. Pharmacol. 5: 1–9, 1974.
DANG, A. Q., FAAS, F. H., LEE, J. A., AND CARTER, W. J. Altered fatty acid
composition in the plasma, platelets, and a corta of the streptozotocin-induced
diabetic rat. Metab. Clin. Exper. 37: DANG, A. Q., FAAS, F. H., LEE, J. A., AND CARTER, W. J. Altered fatty acid composition in the plasma, platelets, and aorta of the streptozotocin-induced diabetic rat. Metab. Clin. Exper. 37: 1065-1072, 1988. DANYSZ, A., AN
-
- diabetic rat. Metab. Clin. Exper. 37: 1065-1072, 1988.
NYSZ, A., AND WISNIEWSKI, K.: The influence of insulin on drug passage into
the tissues. Arch. int. Pharmacodyn. Ther. 158: 30-38, 1965.
HERTOGH, R., EKRA, E., AND VA INTER AND WISNIEWSKI, K.: The influence of insulin on drug passage into the tissues. Arch. int. Pharmacodyn. Ther. 158: 30–38, 1965.

HERTOGH, R., EKKA, E., AND VANDERHEYDEN, I.: Estrogen receptor and influend information the tissues. Arch. int. Pharmacodyn. Ther. 158: 30–38, 1965.

DEHERTOGH, R., EKKA, E., AND VANDERHEYDEN, I.: Estrogen receptor and

stimulation of uterine protein synthesis in ovariectomized diabetic rats

infused intraven
- DIXON, R. L., HART, L. G., AND FOUTS, J. R.: The metabolism of drugs by liver
-
- 1981.

DIXON, R. L., HART, L. G., AND FOUTS, J. R.: The metabolism of drugs by liver

microsomes from alloxan-diabetic rats. J. Pharmacol. Exp. Ther. 133: 7-11,

1961.

DIXON, R. L., HART, L. G., ROGERS, L. A., AND FOUTS, drugs by liver microsomes from alloxan-diabetic rats: long term diabetes. J.
Pharmacol. Exp. Ther. 142: 312–317, 1963.
DEUR, M., DURAND, D., DUMONT, J., DURAND, G., FEGER, J., AND AGNERAY,
J.: Effects of streptozotocin-ind Pharmacol. Exp. Ther. 142: 312-317, 1963.
DODEUR, M., DURAND, D., DUMONT, J., DURAND, G., FEGER, J., AND AGNERAY,
J.: Effects of streptozotocin-induced diabetes mellitus on the binding and
uptake of asialoorosomucoid by is DODEUR, M., DURAND, D., DUMONT, J., DURAND, G., FEGER, J., AND AGNERAY, J.: Effects of streptozotocin-induced diabetes mellitus on the binding and uptake of asialoorosomucoid by isolated hepatocytes from rats. Eur. J. Bioc
- uptake of asialoorosomucoid by isolated hepatocytes from rats. Eur. J.
Biochem. 123: 383-387, 1982.
MMNGO, J. L., GOMEZ, M., LLOBET J. M., CORBELLA, J., AND KEEN, C. L.: Oral
vanadium administration to streptozotocin-diabe DOMINGO, J. L., GOMEZ, M., LLOBET J. M., CORBELLA, J., AND KEEN, C. L.: Oral
vanadium administration to streptozotocin-diabetic rats has marked nega-
tive side-effects which are independent of the form of vanadium used.
To
- tive side-effects which are independent of the form of vanadium
Toxicology 66: 279–287, 1991.
MINGO, J. L., GOMEZ, M., SANCHEZ, D. J., LLOBET, J. M., AND KEEN
Tiron administration mimimizes the toxicity of vanadate but not Toxicology 66: 279-287, 1991.
DOMINGO, J. L., GOMEZ., M., SANCHEZ, D. J., LLOBET, J. M., AND KEEN, C. L.:
Tiron administration minimizes the toxicity of vanadate but not its insulin
minimizes in diabetic rats. Life Sci. 50
- MINGO, J. L., GOMEZ., M., SANCHEZ, D. J., LIOBET, J. M., AND KEEN, C. L.:
Tiron administration minimizes the toxicity of vanadate but not its insulin
mimetic properties in diabetic rats. Life Sci. 50: 1311–1317, 1992.
NNG, Tiron administration minimizes the toxicity of vanadate but not its insulin
mimetic properties in diabetic rats. Life Sci. 50: 1311–1317, 1992.
DONG, Z., HONG, J., MA, Q., Li, D., BULLOCK, J., GONZALEZ, F. J., PARK, S. S., mimetic properties in diabetic rats. Life Sci. 50: 1311-1317, 1992.
DONG, Z., HONG, J., MA, Q., Li, D., BULLOCK, J., GONZALEZ, F. J., PARK, S. S., GELBOIN, H. V., AND YANG, C. S.: Mechanism of induction of cytochrome
P-450
- GELBOIN, H. V., AND YANG, C. S.: Mechanism of induction of cytochrome
P-450_{ac} (P-450j) in chemically induced and spontaneously diabetic rats.
Arch. Biochem. Biophys. 263: 29-35, 1988.
DUBREY, S. W., REAVELEY, D. A., LESL B. M., AND SEED, M.: Effect of insulin-dependent diabetes mellitus on lipids
and lipoproteins: A study of identical twins. Clin. Sci. (Lond.) 84: 537-542,
1993.
EACHO, P. I., AND WEINER, M.: Metabolism of p-nitroanisole an
-
- EACHO, P. I., AND WEINER, M.: Metabolism of p-nitroanisole and aniline in
isolated hepatocytes of streptozotocin-diabetic rats. Drug Metab. Dispos. 8:
385-389, 1980.
EACHO, P. I., SWEENEY, D., AND WEINER, M.: Effects of gl
- EACHO, P. I., SWEENEY, D., AND WEINER, M.: Effects of glucose and fructose on conjugation of p-nitrophenol in hepatocytes of normal and streptozotocin diabetic rats. Biochem. PharmacoL 30: 2616-2619, 1981a.
EACHO, P. I., S
- diabetic rats. Biochem. Pharmacol. 30: 2616-2619, 1981a.
EACHO, P. I., SWEENY, D., AND WEINER, M.: Conjugation of p-nitroanisole and
p-nitrophenol in hepatocytes isolated from streptozotocin diabetic rats. J.
Pharmacol. Ex CHO, P. I., SWEENY, D., AND WEINER, M.: Conjugation of p-nitroanisole and p-nitrophenol in hepatocytes isolated from streptozotocin diabetic rats. J. Pharmacol. Exp. Ther. 218: 34-40, 1981b.

FURTMAN, G. G., BRILEVSKAYA, S ferent age. Biol. Membr. 9: 710-715, 1992.
EGUTKIN, G. G., BRILEVSKAYA, S. I., SAMBURSKII, S. S., GUL'KO, V. V., AND GATSKO, G. G.: Influence of a subdiabetogenic dose of streptozotocin on the physiocohemical properties of GATSKO, G. G.: Influence of a subdiabetogenic dose of streptozotocin on the physicochemical properties of adipose plasma membranes from rats of different age. Biol. Membr. 9: 710-715, 1992.
ELSNER, R. AND ZIEGLER, K.: Det
-
- Frent age. Biol. Membr. 9: 710-715, 1992.
ELSNER, R. AND ZIEGLER, K.: Determination of the apparent functional molecular mass of the hepatocellular sodium-dependent taurocholate transporter
by radiation inactivation. Bioch by radiation inactivation. Biochim. Biophys. Acta 983: 113-117, 1989.

EMUDIANUGHE, T. S., KALDERON, B., GOPHER, A., AND LAPIDOT, A.: Effects of streptozotocin-induced diabetes on drug metabolism in rats. Arch. int. Pharma
- ENDICOTT, J. A., AND LING, V.: The biochemisty of P-glycoprotein-mediated
- multidrug resistance. Annu. Rev. Biochem. 58: 137–171, 1989.
RLINGER, S.: Does Na⁺-K⁺-ATPase have any role in bile secre
Physiol. 243: G243–247, 1982.
- macodyn. 293: 14-19, 1988.

ENDICOTT, J. A., AND LING, V.: The biochemisty of P-glycoprotein-mediated

multidrug resistance. Annu. Rev. Biochem. 58: 137-171, 1989.

ENLINGER, S.: Does Na⁺-K⁺-ATPase have any role in bil I. M. Arias, J. L. Boyer, N. Fausto, W. B. Jakoby, D. Schachter, and D. A. Shafritz, 3rd edition, pp. 769-786, Raven Press, New York, 1994.
VANS, D. A. P.: N-Acetyltransferase. In Pharmacogenetics of Drug Metabolism, ed. b ERLINGER, S.: Bile Flow. [note] *In* The Liver: Biology and pathobiology, ed. by

I. M. Arias, J. L. Boyer, N. Fausto, W. B. Jakoby, D. Schachter, and D. A.

Shafritz, 3rd edition, pp. 769–786, Raven Press, New York, 1994.
-
-
- Shafritz, 3rd edition, pp. 769-786, Raven Press, New York, 1994.
EVANS, D. A. P.: N-Acetyltransferase. In Pharmacogenetics of Drug Metabolism, ed. by W. Kalow, pp. 95-178, Pergamon Press, New York, 1992.
EZAKI, O.: The ins EZAKI, O.: The insulin-like effects of selenate in rat adipocytes. J. Biol. Chem.
265: 1124-1128, 1990.
FAAS, F. N., AND CARTER, W. J.: Cytochrome P-450 mediated drug metabolism
in the streptozotocin diabetic rat. Horm. Me
- **286:** 1124–1128, 1990.

AS, F. N., AND CARTER, W. J.: Cytochrome P-450 mediated drug metabolism

in the streptozotocin diabetic rat. Horm. Metab. Res. 12: 706–707, 1980.

NNTUS, I. G., KADOTA, S., DERAGON, G., FOSTER, B. FANTUS, I. G., KADOTA, S., DERAGON, G., FOSTER, B. AND POSNER, B. I.:
Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 28:
8
- Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adicytes via activation of the insulin receptor tyrosine kinase. Biochemistry 2
8864–8871, 1989.
WREAU, L. V., MALCHOFF, D. M., MOLE, J. E., AND SCHENKMAN,
- **EXAMPLE STATEL ITTUS AND**
FAVREAU, L. V., AND SCHENKMAN, J. B.: Composition changes in hepatic mi-
crosomal cytochrome P-450 during onset of streptozotocin-induced diabetes DIABETES MELLITUS AND HE

FAVREAU, L. V., AND SCHENKMAN, J. B.: Composition changes in hepatic microsomal cytochrome P-450 during onset of streptozotocin-induced diabetes

and during insulin treatment. Diabetes 37: 577-584
- and during insulin treatment. Diabetes 37: 577-584, 1988a.
FAVREAU, L. V., AND SCHENKMAN, J. B.: Cytochrome P-450 alterations in the BB/Wor spontaneously diabetic rat. Biochem. Pharmacol. 37: 3505-3509, 1988b.
ISBN. AND FE
- VREAU, L. V., AND SCHENKMAN, J. B.: Cytochrome P-450 alterations in the BB/Wor spontaneously diabetic rat. Biochem. Pharmacol. 37: 3505-3509, 1988b.
Alternational March 2013. Diabetes mellitus: an autopsy study. Diabetes 3 BB/Wor spo

1988b.

ELDMAN, M.,

ELDMAN, M.,

and liver dis

307, 1954.

ELICKER, G., S
- **FELDMAN, M., AND FELDMAN, M.: The incidence of chole ithiasis, cholesterosis** and liver disease in diabetes mellitus: an autopsy study. Diabetes 3: 305-307, 1954.
FRICKER, G., SCHNEIDER, S., GEROK, W., AND KURZ, G.: Ident EICKER, G., SCHNEIDER, S., GEROK, W., AND F
ent transport systems for bile salts in sin
branes of hepatocytes. Biol. Chem. Hoppe-SIMMER, M., AND ZIEGLER, K.: The transport
Biochim. Biophys. Acta 947: 75-99, 1988.
NAE, Y.,
-
-
- ent transport systems for bile salts in sinusoidal and canalicular mem-
branes of hepatocytes. Biol. Chem. Hoppe-Seyler 368: 1143-1150, 1987. Ch
FRIMMER, M., AND ZIEGLER, K.: The transport of bile acids in liver cells. HUB GARBEROGLIO, C. A., RICHTER, H. M., HENAREJOS, A., MOOSSA, A. R., AND
GARBEROGLIO, C. A., RICHTER, H. M., HENAREJOS, A., MOOSSA, A. R., AND
BAKER, A. L.: Pharmacological and physiological doses of insulin and deter-
minant REEROGLIO, C. A., RICHTER, H. M., HENA
BAKER, A. L.: Pharmacological and physiolominants of bile flow in dogs. Am. J. Physiology
MUTAM, A., NG, O.-C., AND BOYER, J. M.: Iso
short-term culture: structural characteristic
gan
- minants of bile flow in dogs. Am. J. Physiol. 245: G157-G163, 1983.
GAUTAM, A., NG, O.-C., AND BOYER, J. M.: Isolated rat hepatocyte couplets in short-term culture: structural characteristics and plasma membrane reorganiza
-
- 1986.
GOLDSTEIN, M. E. AND SCHEIN, C. J.: The significance of biliary tract disease in GELEHRTER, T. D., SHREVE, P. D., AND DISWORTH, V. M.: Insulin regulation of
Na/K pump activity in rat hepatoma cells. Diabetes 33: 428–434, 1984.
GIBBONS, G. F.: Hyperlipidaemia of diabetes. Clin. Sci. (Lond.) 71: 477–486,
-
- Ne/K pump activity in rat hepatoma cells. Diabetes 33: $428-434$, 1984.

GIBBONS, G. F.: Hyperlipidaemia of diabetes. Clin. Sci. (Lond.) 71: 477–486,

1986.

GOLDSTEIN, M. E. AND SCHEIN, C. J.: The significance of biliary the diabetic—its unique features. Am. J. Gastroenterol. 39: 630–634, 1963.
GOTO, Y., KIDA, K., IKEUCHI, M., KAINO, Y., AND MATSUDA, H.: Synergism in
insulin-like effects of molybdate plus H_2O_2 or tungstate plus H_2O_2 insulin-like effects of molybdate plus H_2O_2 or tungstate plus H_2O_2 on glucose transport by isolated rat adipocytes. Biochem. Pharmacol. 44: 174–177, 1992.
GONZALEZ, J., AND FEVERY, J.: Spontaneously diabetic biobr
- glucose transport by isolated rat adipocytes. Biochem. Pharmacol. 44: 174–177, 1992.
GONZALEZ, J., AND FEVERY, J.: Spontaneously diabetic biobreeding rats and impairment of bile acid. independent bile flow and increased bi GONZALEZ, J., AND FEVERY, J.: Spontaneously diabetic biobreeding rats and impairment of bile acid-independent bile flow and increased biliary bilirubin, calcium and lipid secretion. Hepatology 16: 426–432, 1992.
GRAF, J.:
- from electrolyte transport in rat liver. Am. J. Physiol. 244: G233-G246, 1983.
- from electrolyte transport in rat liver. Am. J. Physiol. **244:** G233-G246, 1983.
GRANT, M. H., AND DUTHIE, S. J.: Conjugation reactions in hepatocytes isolated
from streptozotocin-induced diabetic rats. Biochem. Pharmacol.
- from streptozotocin-induced diabetic rats. Biochem. Pharmacol. 36: 3
9655, 1987.
JENET, L., GUEBLE-VAL, F., PRODHOMME, C., LERAY, G., JOUANOLLE, ARND TREUT, A.: Pathophysiological variations in the rat liver plasma name se from streptozotocin-induced diabetic rats. Biochem. Pharmacol. 36: 3647

3655, 1987.

GUENET, L., GUEBLE-VAL, F., PRODHOMME, C., LERAY, G., JOUANOLLE, A. MAND TREUT, A.: Pathophysiological variations in the rat liver plasm GUENET, L., GUEBLE-VAL, F., PRODHOMME, C., LERAY, G., JOUANOLLE, A. M.,
AND TREUT, A.: Pathophysiological variations in the rat liver plasma membrane serine proteinase activity. Enzyme (Basel) 42: 121-128, 1989.
GUMBINER,
-
-
-
- tions. Am. J. Physiol. 253: C749-C758, 1987.

GUZELIAN, P., AND BOYER, J. L.: Glucose reabsorption from bile. Evidence for a

biliohepatic circulation. J. Clin. Invest. 53: 526-535, 1974.

HABER G. B., AND HEATON, K. W.: L biliohepatic circulation. J. Clin. Invest. 53: 526-535, 1974.
NBER G. B., AND HEATON, K. W.: Lipid composition of bile in diabetics and
obesity-matched controls. Gut 20: 518-522, 1979.
NGRENBUCH, B., LUBBERT, H., STIEGER, obesity-matched controls. Gut 20: 518-522, 1979.

HAGENBUCH, B., LUBBERT, H., STIEGER, B., AND MEIER, P. J.: Expression of the

hepatocyte Na⁺/bile acid cotransporter in *Xenopus laevis* occytes. J. Biol.

Chem. 2635: 55
-
- hepatocyte Na⁺/bile add cotransporter in *Xenopus laevis* occytes. J. Biol.
Chem. 268: 5357-5360, 1990.
HALLBRUCKER, C., LANG, F., GEROK, W., AND HAUSSINGER, D.: Cell swelling
increases bile flow and taurocholate excreti
- rat liver. Biochem. J. 281: 593-595, 1992.

HANSSON, R.: Effect of diabetes, starvation, ethanol and isoniazid on rat liver

microsomal 12a-hydroxylase activity involved in bile acid biosynthesis. Bio-

chem. Pharmacol. 38 HARGROVE, J. L., TROTTER, J. F., ASHLINE, H. C., AND KRISHNAMURTI, P.
Experimental diabetes increases the formation of sulfane by transsulft
tion and inactivation of tyrosine aminotransferase in cytosols from rat li
Metabo
- HARTFORD, J. D., SKYLER, J. S., AND BARKIN, J. S.: Diabetes and the gastroin-Experimental diabetes increases the formation of sulfane by transsulfuration and inactivation of tyrosine aminotransferase in cytosols from rat liver.
Metabolism 38: 666-672, 1989.
Merromen, J. D., S. R., AND BARKIN, J. S. HARTFORD, J. D., SKYLER, J. S., AND BARKIN, J. S.: Diabetes and the gastrointestinal system. In Ellenberg and Rifkin's Diabetes Mellitus: Theory and Practice, 4th ed., ed. by H. Rifkin and D. Porte, pp. 824–837, Elsevier,
- Stractice, 4th ed., ed. by H. Rifkin and D. Porte, pp. 824–837, Elsevie
York, 1990.
SSAN, A. S., YUNKER, R. L., AND SUBBIAH, M. T. R.: Development of b
biogenesis in the rat: effect of neonatel thyroidectomy, adrenate
tore Practice, 4th ed., ed. by H. Rifkin and D. Porte, pp. 824–837, Elsevier, New York, 1990.

HASSAN, A. S., YUNKER, R. L., AND SUBBIAH, M. T. R.: Development of bile acid

biogenesis in the rat: effect of neonatal thyroidecto
- FORM, N. S., YUNKER, R. L., AND SUBBIAH, M. T. R.: Development of bile acid biogenesis in the rat: effect of neonatal thyroidectomy, adrenalectomy and streptozotocin-induced diabetes. Biol. Neonate 41: 110–114, 1982. ASSAN Experience in the biogenesis in the streptozotocin-incomension in the streptozotocin-incomension ASSAN, A. S., AND maternal and neo 490-495, 1980. Maxemond and neonated diabetes. Biol. Neonate 41: 110-114, 1982.

HASSAN, A. S., AND SUBBIAH, M. T. R.: Effect of diabetes during pregnancy on

maternal and neonatal bile acid metabolism. Proc. Soc. Exp. Biol. Med. 165:

4 HASSAN, A. S., AND SUBBIAH, M. T. R.: Effect of diabetes during pregnancy on maternal and neonatal bile acid metabolism. Proc. Soc. Exp. Biol. Med. 165: 490–495, 1980.
HAWESWORTH, G. M., AND MORRISON, M. H.: The effect of
- 490–495, 1980.

HAWESWORTH, G. M., AND MORRISON, M. H.: The effect of streptozotocin-

induced diabetes on glucuronyl transferase activity in the rat. Proc. Brit.

Pharmacol. Soc. 593–540, 1980.

HEYLIGER, C. E., TAHILIAN
-
- Induced diabetes on glucuronyl transferase activity in the rat. Proc. Brit.

HISYLIGER, C. E., TAHILIANI, A. G., AND MCNEILL, J. H.: Effect of vanadate on

elevated blood glucose and depressed cardiac performance of diabet HEYLIGER, C. E., TAHILIANI, A. G., AND MCNEILL, J. H.: Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats.
Science (Wash. DC) 227: 1474–1477, 1985.
HINOHARA, Y., TAKANASHI, S.,
-
- HOENER, B., NOACH, A., ANDRUP, M., AND YEN, T.-S. B.: Nitrofurantoin pro-
 REGISTION aposition changes in hepatic mi-
 HOENER, B., NOACH, A., ANDRUP, M., AND YEN, T.-S. B.: Nitrofurantoin pro-
 REGIST-584, 1988a.
 R EPATOBILIARY FUNCTION 19

HOENER, B., NOACH, A., ANDRUP, M., AND YEN, T.-S. B.: Nitrofurantoin produces oxidative stress and loss of glutathione and protein thiols in the

isolated perfused rat liver. Pharmacology 38: 363-
	-
	- DNG, J., PAN, H., GONZALEZ, F. J., GELBOIN, H. V., AND YANG, C. S.: The induction of a specific form of cytochrome P-450 (P-450j) by fasting. Biochem. Biophys. Res. Commun. 142: 1077–1083, 1987.
chem. Biophys. Res. Commun. induction of a specific form of cytochrome P-450 (P-450j) by fasting. Bio-
chem. Biophys. Res. Commun. 142: 1077-1083, 1987.
HONG, W., AND DOYLE, D.: cDNA cloning for a bile canalicular domain-specific
membrane glycoprotei HoNG, W., AND DOYLE, D.: CDNA cloning for a bile canalicular domain-specific membrane glycoprotein of rat hepatocytes. Proc. Natl. Acad. Sci. USA 84:

	7962-7966, 1987.

	HONORE, L. H.: The lack of a positive correlation bet
	- membrane glycoprotein of rat hepatocytes. Proc. Natl. Acad. Sci. USA 84:
7962–7966, 1987.
HONORE, L. H.: The lack of a positive correlation between symptomatic cho-
lesterol cholelithiasis and clinical diabetes mellitus: a
	- DNORE, L. H.: The lack of a positive correlation between symptomatic cholesterol cholelithiasis and clinical diabetes mellitus: a retrospective study. J. Chron. Dis. 38: 465–469, 1980.
UBER, M., GUHLMANN, A., JANSEN, P. L. defective hepatic anion excretion. Hepatology 7: 224-228, 1987.
HUBER, M., GUHLMANN, A., JANSEN, P. L. M., AND KEPPLER, D.: Hereditt
defect of hepatolikiry cysteinyl leukotriene elimination in mutant rats w
defective hepat
	- Chron. Dis. 33: 465–469, 1980.

	UBER, M., GUHLMANN, A., JANSEN, P. L. M., AND KEPPLER, D.: Hereditary

	defect of hepatobiliary cysteinyl leukotriene elimination in mutant rats with

	defective hepatic anion excretion. Hepat HUBER, M., BAUMERT, T., GUHLMANN, A., MAYER, D., AND KEPPLER, D.: Hepatobiliary cysteinyl leukotriene elimination. *In* Hepatic Transport of Organic Substances. ed. by E. Petzinger, R. K. H. Kinne, and H. Sies, pp. 131–140 from Substances. ed. by E. Petzinger, R. K. H. Kinne, and H. Sies, pp. 131–140, Springer Verlag, Berlin, 1989.
HUSSIN, A. H., AND SKETT, P.: Lack of effect of insulin in hepatocytes isolated from streptozotocin-diabetic ma
	- USSIN, A. H., AND SKETT, P.: Lack of effect of insulin in hepatocytes isolat from streptozotocin-diabetic male rats. Biochem. Pharmacol. 37: 1683–16:
1988.
LING, H. P. A.: Techniques for microfloral and associated metaboli
	- from streptozotocin-diabetic male rats. Biochem. Pharmacol. 37: 1683–1686,
1988.
ILLING, H. P. A.: Techniques for microfloral and associated metabolic studies in
relation to the absorption and enterohepatic circulation of ISB. ILLING, H. P. A.: Techniques for microfloral and associated metabolic studies in relation to the absorption and enterohepatic circulation of drugs. Xenobiotica 11: 815–818, 1981.
INGEBRETSON, W. R., MOXLEY, M. A., ALL
	- LING, H. P. A.: Techniques for microfloral and associated metabolic studies in relation to the absorption and enterohepatic circulation of drugs. Xenobiotica 11: 815–818, 1981.
GEBRETSON, W. R., MOXLEY, M. A., ALLEN, D. O. relation to the absorption and enterohepatic circulation of drugs. Xenobiotica 11: 815–818, 1981.
GEBRETSON, W. R., MOXLEY, M. A., ALLEN, D. O., AND WAGLE, S. R.: Studies
in gluconeogenesis, protein synthesis and cyclic AM INGEBRETSON, W. R., MOXLEY, M. A., ALLEN, D. O., AND WAGLE, S. R.: Studies
in gluconeogenesis, protein synthesis and cyclic AMP levels in isolated
perenchymal cells following insulin withdrawal from alloxan diabetic rats.

	- perenchymal cells following insulin withdrawal from alloxan diabetic rats.
Biochem. Biophys. Res. Commun. 49: 601–607, 1972.
HIKAWA, T., MUELLER, M., KLUENEMANN, C., SCHAUB, T., AND KEPPLER, D.:
ATP-dependent primary activ Biochem. Biophys. Res. Commun. 49: 601-607, 1972.
ISHIKAWA, T., MUELLER, M., KLUENEMANN, C., SCHAUB, T., AND KEPPLER, D.
ATP-dependent primary active transport of cysteinyl leukotrienes across
liver canalicular membrane: r ATP-dependent primary a
liver canalicular membrane
glutathione S-conjugates. .
FFERSON, L. S.: Role of instead.
betes 29: 487-496, 1980.
FFERSON, L. S., LIAO, W. S.
	-
	- Iver canalicular membrane: role of the ATP-dependent transport system for glutathione S-conjugates. J. Biol. Chem. 265: 19279-19286, 1990.
JEFFERSON, L. S.: Role of insulin in the regulation of protein synthesis. Diabetes
	- BEFFERSON, L. S.: Role of insulin in the regulation of protein synthesis. Diabetes 29: 487-496, 1980.

	JEFFERSON, L. S., LIAO, W. S. L., PEAVY, D. E., MILLER, T. B., APPEL, M. C., AND TAYLOR, J. M.: Diabetes induced altera
	- Biol. Chem. 258: 1369–1375, 1983.
JIMENEZ-JATIVA, S., NUNEZ DE CASTRO, I., AND MORATA, P.: Rat serum fructose-
1,6-bisphosphatase: modifications in different experimental conditions. Bio-
chem. Int. 27: 923–929, 1992.
JOHA JIMENEZ-JATIVA, S., NUNEZ DE CASTRO, I., AND MORATA, P.: Rat serum fructose-
1,6-bisphosphatase: modifications in different experimental conditions. Bio-
chem. Int. 27: 923-929, 1992.
JOHANSSON, I., ELIASSON, E., NORSTEN,
	- P-450 in liver microsomes and reconstituted membranes. FEBS Lett. 196:
59–64, 1986.
MLOW, D. J., THORGEIRSSON, S. S., POTTER, W. Z., HASHIMOTO, J., AND
MITCHELL, J. R.: Acetaminophen-induced hepatic necrosis. VI. Metabolic JOLLOW, D. J., THORGEIRSSON, S. S., POTTER, W. Z., HASHIMOTO, J., AND
MITCHELL, J. R.: Acetaminophen-induced hepatic necrosis. VI. Metabolic
disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 12:
251–27 JOLLOW, D. J., THORGEIRSSON, S. S., POTTER, W. Z., HASHIMOTO, J., AND
MITCHELL, J. R.: Acetaminophen-induced hepatic necrosis. VI. Metabolic
disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 12:
251–27 MITCHELL, J. R.: Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 12:
251–271, 1974.
NNES, A. L., HRADEK, G. T., SCHMUCKER, D. L., AND UNDERDOWN,
	- disposition of toxic and nontoxic doses of acetaminophen. Pharmacolog51-271, 1974.
251-271, 1974.
NES, A. L., HRADEK, G. T., SCHMUCKER, D. L., AND UNDERDOWN, B. date of polymeric and secretory immunoglobulin A after retrog 251-271, 1974.
JONES, A. L., HRADEK, G. T., SCHMUCKER, D. L., AND UNDERDOWN, B. J.: The
fate of polymeric and secretory immunoglobulin A after retrograde infusion
into the common bile duct in rats. Hepatology 4: 1173--1183 **NES, A. L., HRADEK,**
fate of polymeric and
into the common bil
NES, R. S.: Effect of
231: 40-43, 1976.
NES, R. S., AND MEYI fate of polymeric and secretory immunoglobulin A after retrograde infusion
into the common bile duct in rats. Hepatology 4: 1173–1183, 1984.
JONES, R. S.: Effect of insulin on canalicular bile formation. Am. J. Physiol.
23
	-
	-
	- The common bile duct in rats. Hepatology 4: 1173–1183, 1984.

	JONES, R. S.: Effect of insulin on canalicular bile formation. Am. J. Physiol.

	231: 40–43, 1976.

	JONES, R. S., AND MEYERS, W. C.: Regulation of hepatic biliar **231:** 40–43, 1976.
JONES, R. S., AND MEYERS, W. C.: Regulation of hepatic biliary secretion. Annu.
Rev. Physiol. 41: 67–82, 1979.
JONES, R. S., PUTNAM, W., AND ANDERSEN, D. K.: Insulin's effect on bile flow
and hipid exc NES, R. S., AND
Rev. Physiol. 4
NES, R. S., PU1
and lipid excre
23-40, 1984.
MIMOTO, Y., GA Rev. Physiol. 41: 67-82, 1979.
JONES, R. S., PUTNAM, W., AND ANDERSEN, D. K.: Insulin's effect on bile flow
and lipid excretion during euglycemia and hypoglycemia. Dig. Dis. Sci. 29:
23-40, 1984.
KAMIMOTO, Y., GATMAITAN, Z
	-
	- JONES, R. S., PUTNAM, W., AND ANDERSEN, D. K.: Insulin's effect on bile flow
and lipid excretion during euglycemia and hypoglycemia. Dig. Dis. Sci. 29:
23-40, 1984.
KAMIMOTO, Y., GATMAITAN, Z., HSU, J., AND ARIAS, I. M.: T the multi-drug resistance gene product, in rat liver canalicular membrane
vesicles. J. Biol. Chem. 264: 11693-11698, 1989.
KATO, R., ONODO, K., AND TAKANAKA, A.: Species differences in drug metabo-
lism by liver microsomes
	- Pharmacol. 20: 546-553, 1970.

	KATO, R., AND YAMAZOE, Y.: Sex-specific cytochrome P450 as a cause of sex-

	and species-related differences in drug toxicity. Toxicol. Lett. 64-65: 661-

	667, 1992.

	KEY, P.H., ENNORRIS, G. G
	- and species-related differences in drug toxicity. Toxicol. Lett. 64-65: 661-667, 1992.
KEY, P. H., BONORRIS, G. G., MARKS, J. W., CHUNG, A., AND SCHOENFIELD, L. J.:
Biliary lipid synthesis and secretion in gallstone patien
	- sy, P. H., BONORRIS, G. G., MARKS, J. W., CHUNG, A., AND SCHOENFIELD, L. J.:
Biliary lipid synthesis and secretion in gallstone patients before and during
treatment with chenodeoxycholic acid. J. Lab. Clin. Med. 96: 816–82 Biliary lipid synthesis and secretion in gallstone patients before and during
treatment with chenodeoxycholic acid. J. Lab. Clin. Med. 95: 816-826, 1989.
KIMURA, K., OGURA, Y., AND OGURA, M.: Biosynthesis of cholic acid ac
	- MURA, K., OGURA, Y., AND OGURA, M.: Biosynthesis of cholic acid accelerated
by diabetes: its mechanism and effect of vanadate administration. Biochim.
Biophys. Acta 1123: 303–308, 1992.
WNE, R. K. H.: Modulation of Liver C by diabetes: its mechanism and effect of vanadate administration. Biochim.
Biophys. Acta 1123: 303–308, 1992.
NNE, R. K. H.: Modulation of membrane transport in epithelia: lessons sfor
NNE, R. K. H.: Modulation of Liver Ce Biophys. Acta 1123: 303-308, 1992.
KINNE, R. K. H.: Modulation of membrane transport in epithelia: lessons sfor
the liver. In Modulation of Liver Cell Expression, ed. by W. Reutter, H.
95-106, MTP Press, Lancaster, UK, 198
	- 95–106, MTP Press, Lancaster, UK, 1987.

	KIRKPATRICK, R. B., AND KRAFT, B. G.: Effect of streptozotocin-induced diabetes

	on bile acid sulfation in male rat liver. Am. J. Physiol. **247:** G226–G230,

	1984.

	KITAMURA, T., JA
	-

ARMACOLOGI

spet

OUSING MATKINS AND SANDERS

organic anions in mutant (TR⁻) rats with conjugated hyperbilirubinemia. secretion in

Proc. Natl. Acad. Sci. USA 87: 3557-3561, 1990. Physiol. Ph Proc. Natl. Acad. Sci. USA 87: 3557-3561, 1990.
Proc. Natl. Acad. Sci. USA 87: 3557-3561, 1990.
AASSEN, C. D., AND WATKINS, J. B. II. I.: Mecha

- WATKINS

organic anions in mutant (TR⁻) rats with conjugated hyperbilirubinemia

Proc. Natl. Acad. Sci. USA 87: 3557–3561, 1990.

KLAASSEN, C. D., AND WATKINS, J. B. II. I.: Mechanisms of bile formation,

hepatic uptake
- organic anions in mutat (TR⁻) rats with conjugated hyperbilirubinemia.
Proc. Natl. Acad. Sci. USA 87: 3557-3561, 1990.
KLAASSEN, C. D., AND WATKINS, J. B. II. I.: Mechanisms of bile formation, Mepatic uptake and biliary MEXASSEN, C. D., AND WATKINS, J. B. II. I.: Mechanisms of bile formation,
hepatic uptake and biliary excretion. Pharmacol. Rev. 36: 1–67, 1984.
KNODELL, R. G., HANDWERGER, B. S., MORLEY, J. E., LEVINE, A. S., AND BROWN,
D. ENODELL, R. G., HANDWERGER, B. S., MORLEY, J. E., LEVINE, A. S., AND BROWN, topeptidase dipeptidyl peptidase IV: an analysis by tissue distribution, purifi-

D. M.: Separate influences of insulin and hyperglycemia on hepat
- metabolism in mice with genetic and chemically ind
J. Pharmacol. Exp. Ther. 230: 256-262, 1984.
DBAYASHI, K., SOGAME, Y., HURA, H., AND HAYASHI, K
thione S-conjugate transport in canalicular and basol
membranes. J. Biol. C J. Pharmacol. Exp. Ther. 230: 256–262, 1984.
KOBAYASHI, K., SOGAME, Y., HURA, H., AND HAYASHI, K.: Mechanism of gluta-
thione S-conjugate transport in canalicular and basolateral rat liver plasma
membranes. J. Biol. Chem. BAYASHI, K., SOGAME, Y., HURA, H., AND HAYASHI, K.: Mechanism of glutathione S-conjugate transport in canalicular and basolateral rat liver plasma membranes. J. Biol. Chem. 265: 7737–7741, 1990.
REDOWIAK, A. M., WOJAS, J.,
- thione S-conjugate transport in canalicular and basolateral rat liver plasm
membranes. J. Biol. Chem. 265: 7737-7741, 1990.
KORDOWIAK, A. M., WOJAS, J., AND SUBCZYNSKI, W. K.: Fluidity of rat live
Golgi membranes in strept KORDOWIAK, A. M., WOJAS, J., AND SUBCZYNSKI, W. K.: Fluidity of rat liver
Golgi membranes in streptozotocin diabetes. A spin label study. Biochim.
Biophys. Acta 1022: 296-302, 1990.
KRAMER, W., AND SCHNEIDER, S.: 3-Diaziri
-
- Biophys. Acta 1022: 296-302, 1990.
 **KRAMER, W., AND SCHNEIDER, S.: 3-Diazirine-derivatives of bile salts for photoaffinity labeling. J. Lipid. Res. 30: 1281–1288, 1989.

KUDCHODKAR, B. J., LEE, M. J. C., LEE, S. M., DIMA** A. G.: Effect of dietary protein on cholesterol homeostasis in diabetic rats.
- **M. J., FEVERY, J., LEE, M. J. C., LEE, S. M., DIMARCO, N. M., AND LACKO,** A. G.: Effect of dietary protein on cholesterol homeostasis in diabetic rats.
J. Lipid Res. 29: 1272–1288, 1988.
J. Lipid Res. 29: 1272–1288, 1988 Secretion of sulfated and unsulfated bile acids in diabetic rats.
J. Lipid Res. 29: 1272–1288, 1988.
JIPERS, F., ENSERINK, M., HAVINGA, R., VAN DER STEEN, A. B. M., HARDONK,
M. J., FEVERY, J., AND VONK, R. J.: Separate tra KUIPERS, F., ENSERINK, M., HAVINGA, R., VAN DER STEEN, A. B. M., HARDONK, M. J., FEVERY, J., AND VONK, R. J.: Separate transport systems for biliary secretion of sulfated and unsulfated bile acids in the rat. J. Clin. Inve
- **M. J., FEVERY, J., AND VONK, R. J.: Separate transport systems for bilisecretion of sulfated and unsulfated bile acids in the rat. J. Clin. Invest 1598, 1988.

RESTER, R. RADOMINISKA, A., ZIMNIAK, P., LITTLE, J. M., HAVI** secretion of sulfated and unsulfated bile acids in the rat. J. Clin. Invest. 81:
1593–1599, 1988.
JIPERS, F., RADOMINSKA, A., ZIMNIAK, P., LITTLE, J. M., HAVINGA, R., VONK,
R. J., AND LESTER, R.: Defective biliary secretio 30: 1835-1845, 1989. KuIPER.s, F., sn V0NK, R. **J.:** Biliary excretion of organic anions. *In* Biliary
- R. J., AND LESTER, R.: Defective biliary secretion of bile acid 3-0-glucuronides in rats with hereditary conjugated hyperbilirubinemia. J. Lipid Res.
30: 1835-1845, 1989.
JIPERS, F., AND VONK, R. J.: Biliary excretion of 80: 1835-1845, 1989.

KUIFERS, F., AND VONK, R. J.: Biliary excretion of organic anions. *In* Biliary

Excretion of Drugs and Other Chemicals, ed. by C. P. Siegers and J. B.

Watkins III, Progress in Pharmacology and Clini Excretion of Drugs and Other Chemicals, ed. by C. P. Siegers and J. B. Watkins III, Progress in Pharmacology and Clinical Pharmacology, Vol. 8(4), pp. 215–239, Fischer Verlag, Stuttgart, 1991.
KNONVIRIYARAN, V., AND STACEY
- Watkins III, Progress in Pharmacology and Clinical Pharmacology, Vol. 8(4), pp. 215–239, Fischer Verlag, Stuttgart, 1991.
JKONGVIRIYAPAN, V., AND STACEY, N. H.: Hepatocelular transport. In Biliary Excretion of Drugs and Ot 8(4), pp. 215–239, Fischer Verlag, Stuttgart, 1991.
KUKONGVIRIYAPAN, V., AND STACEY, N. H.: Hepatocelular transport. In Biliary
Excretion of Drugs and Other Chemicals, ed. by C. P. Siegers and J. B.
Watkins III, Progress i
-
- LAAKSO, M., AND PYORALA, K.: Adverse effects of obesity on lipid and lipoprotein levels in insulin-dependent and non-insulin-dependent diabetes.
Metab. Clin. Exper. 39: 117-122, 1990.
LAKE, J. R., RENNER, E. L., SCHARSCHM Metab. Clin. Exper. 39: 117–122, 1990.
KE, J. R., RENNER, E. L., SCHARSCHMIDT, B. F., CRAGOE JR., E. J., HAGEY, L. R., LAMBERT, K. J., GURANTZ, D., AND HOFMANN, A. F.: Inhibition of Na⁺/H⁺
exchange in the rat is associ exchange in the rat is associated with decreased ursodeoxycholate hyper-choleresis, decreased secretion of unconjugated ursodeoxycholate, and increased ursodeoxycholate glucuronidation. Gastroenterology 95: 454–463, 1988.

- choleresis, decreased secretion of unconjugated ursodeoxycholate, and increased ursodeoxycholate glucuronidation. Gastroenterology **95:** 454–463, 1988.
 IN Biliary Excretion of Drugs and Other Chemicals, ed. by C. P. Sie 1988.

LAUTERBURG, B. H.: Biliary excretion of glutathione and glutathione adducts.
 In Biliary Excretion of Drugs and Other Chemicals, ed. by C. P. Siegers and

J. B. Watkins III, Progress in Pharmacology and Clinical P LAUTERBURG, B. H.: Biliary excretion of glutathione and glutathione adducts.

In Biliary Excretion of Drugs and Other Chemicals, ed. by C. P. Siegers and

3. B. Watkins III, Progress in Pharmacology and Clinical Pharmacolo
- J. B. Watkins III, Progress in Pharmacology and Clinical Pharmacology, vol.

8(4), pp. 201-213, Fischer Verlag, Stuttgart, 1991.

LEIGHTON, B., COOPER, G. J. S., DACOSTA, C., AND FOOT, E. A.: Peroxovana-

dates have full i
- Insulin-resistant skeletal muscle. Biochem. J. 276: 289-292, 1991.
LENICH, C. M., CHOBANIAN, A. V., BRECHER, P., AND ZANNIS, V. I.: Effect of
diatary cholesterol and alloxan-diabetes on tissue cholesterol and apolipoprotei NICH, C. M., CHOBANIAN, A. V., BRECHER, P., AND ZANNIS, V. I.: Effect of diatary cholesterol and alloxan-diabetes on tissue cholesterol and apolipoprotein E meeseenger RNA levels in the rabbit. J. Lipid Res. 32: 431-438, 1 diatary cholesterol and alloxan-diabetes on tissue cholesterol and apolipoprotein E messenger RNA levels in the rabbit. J. Lipid Res. 32: 431–438, 1991.
LEVY, E., AND BENDAYAN, M.: Lipoprotein lipase in experimental diabet
-
- tein E messenger RNA levels in the rabbit. J. Lipid Res. 32: 431–438, 1991.
LEVY, E., AND BENDAYAN, M.: Lipoprotein lipase in experimental diabetic rats:
beneficial effect of vanadate tratement. Diabet. Metab. 17: 44–48, 1
-
- Lm, X.: Relationship between blood glucose and serum lipoproteins in alloxan diabetic rabbit. Acta Acad. Med. Sin. 11: 363-365, 1989.
LIEBER, M. M.: The incidence of gallstones and their correlation with other diseases. Am LIN, J. H., DELUNA, F. A., TOCCO, D. J., AND ULM, E. H.: Effect of experimental **17: 147-152, 1989.**
 17: 147-152, 1989. P. A., Tococo, D. J., AND ULM, E. H.: Effect of experimental diabetes on elimination kinetics of diflunisal in rats. Drug Metab. Dispos.
 17: 147-152, 1989. **LANGRUEST DRIGHTS** in, J. H., DELUNA, F. A., TOCCO, D. J., AND ULM, E. H.: Effect of experiment diabetes on elimination kinetics of diflunisal in rats. Drug Metab. Dispo
17: 147–152, 1989.
NGHURST, P. A., LACAGNIN, L. B., STOATS, D. E., AND
- Monders on elimination kineti
diabetes on elimination kineti
17: 147–152, 1989.
MGHURST, P. A., LACAGNIN, L. i
in hepatic drug metabolism in neight.
macol. 35: 1768–1771, 1986.
I, S. C., GE, J. L., KUHLENKAN 17: 147–152, 1989.

LONGHURST, P. A., LACAGNIN, L. B., STOATS, D. E., AND COLBY, H. D.: Changes

in hepatic drug metabolism in alloxan-diabetic male rabbits. Biochem. Pharmacol. 35: 1768–1771, 1986.

Lu, S. C., GE, J. L.,
- in hepatic drug metabolism in alloxan-diabetic male rabbits. Biochem. Pharmacol. **35:** 1768-1771, 1986.

LU, S. C., Ge, J. L., KUHLENKAMP, J., AND KAPLOWITZ, N.: Insulin and glu-cocorticoid dependence of hepatic gamma-glut cocorticoid dependence of hepatic gamma-glutamylcysteine synthetase and
glutathione synthesis in the rat: studies in cultured hepatocytes and in vivo.
J. Clin. Invest. 90: 524-532, 1992.
J. Clin. Invest. 90: 524-532, 1992.
- glutathione synthesis in the rat: studies in cultured hepatocytes and i
J. Clin. Invest. 90: 524–532, 1992.
NAZZI, G. C., TREBELLI, C., GAZZIN, B., AND SOTTOCASA, G. L.: F
studies on bilitranslocase, a plasma membrane prot J. Clin. Invest. 90: 524-532, 1992.

LUNAZZI, G., CAZZIN, B., AND SOTTOCASA, G. L.: Further

studies on bilitranslocase, a plasma membrane protein involved in hepatic

organic anion uptake. Biochim. Biophys. Acta 685: 117–
- studies on bilitranslocase, a plasma membrane pro
organic anion uptake. Biochim. Biophys. Acta 685:
NNZATO, E., BRAGHETTO, L., ZAMBON, A., CREPALDI, (D., AND ZAMBON, S.: Lipoprotein abnormalities in
D., AND ZAMBON, S.: Lip organic anion uptake. Biochim. Biophys. Acta 685: 117-122, 1982.
MANZATO, E., BRAGHETTO, L., ZAMBON, A., CREPALDI, G., LAPOLLA, A., FEDELE,
D., AND ZAMBON, S.: Lipoprotein abnormalities in well-treated type II dia-
betic p
- NNZATO, E., BRAGHETTO, L., ZAMBON, A., CREPALDI, G., LAPOLLA, A., FEDELE, D., AND ZAMBON, S.: Lipoprotein abnormalities in well-treated type II diabetic patients. Diabetes Care 16: 469–475, 1993.
RaCOLIS, R. N., SCHELL, M. D., AND ZAMBON, S.: Lipoprotein abnormalities in well-treated type II diabetic patients. Diabetes Care 16: 469–475, 1993.
hacollis, R. N., SCHELL, M. J., TAYLOR, S. I., AND HUBBARD, A. L.: Hepatocyte plasma membrane ecto-A MARGOLIS, R. N., SCHELL, M. J., TAYLOR, S. I., AND HUBBARD, A. L.: Hepatocyte plasma membrane ecto-ATPase (pp 120/HA₄) is a substrate for tyrosine kinase activity of the insulin receptor. Biochem. Biophys. Res. Commun. 1 plasma membrane ecto-ATPase (pp 120/HA₄) is a substrate for tyros
kinase activity of the insulin receptor. Biochem. Biophys. Res. Comm
166: 562–566, 1990.
RRN, J. J. G., VILLANUEVA, G. R., AND ESTELLER, A.: Diabetes-indu
- kinase activity of the insulin receptor. Biochem. Biophys. Res. Commun.
166: 562-566, 1990.
MARIN, J. J. G., VILLANUEVA, G. R., AND ESTELLER, A.: Diabetes-induced
cholestasis in the rat. Possible role of hyperglycemia and
-

SANDERS
secretion in the rat stimulated by taurocholate: effect of chloroquine. Can. J.
Physiol. Pharmacol. 66: 749–753, 1988.

- Physiol. Pharmacol. 66: 749-753, 1988.
Physiol. Pharmacol. 66: 749-753, 1988.
MCCAUGHAN, G. W., WICKSON, J. E., CRESWICK, P. F., AND GORRELL, **M.** D.:
Identification of the bile canalicular cell surface molecule GD 110 as Interaction in the rat stimulated by taurocholate: effect of chloroquine. Can. J. Physiol. Pharmacol. **66:** 749–753, 1988.
CAUGHAN, G. W., WICKSON, J. E., CRESWICK, P. F., AND GORRELL, M. D.:
Identification of the bile can secretion in the rat stimulated by taurocholate: effect of chloroquine. Can. J.
Physiol. Pharmacol. 66: 749–753, 1988.
McCAUGHAN, G. W., Wickson, J. E., CRESWICK, P. F., AND GORRELL, M. D.:
Identification of the bile canal
- topeptidase dipeptidyl peptidase IV: an analysis by tissue distribution, purification and N-terminal amino acid sequence. Hepatology 11: 534-544, 1990.
MCLENNAN, S. V., HEFFERNAN, S., WRIGHT, L., RAE, C., FISHER, E., YUE, MELTER, J. R.: Changes in hepatic glutathione metabolism in diabetes.
Diabetes 40: 344–348, 1991.
MELER, P. J.: Transport polarity of hepatocytes. Semin. Liver Dis. 8: 293–307,
1988.
MELER, P. J.: The bile salt secretory p
-
-
- Diabetes 40: 344-348, 1991.

MEIER, P. J.: Transport polarity of hepatocytes. Semin. Liver Dis. 8: 293-307,

1988.

MEIER, P. J.: The bile salt secretory polarity of hepatocytes. J. Hepatol. 9:

124-129, 1989.

MEIER, P. J
- Verlag, Stuttgart, 1991.

MEER, P. J., KNICKELBEIN, P., MOSELEY, R. H., DOBLINS, J. W., AND BOYER, J.

L. Evidence for carrier-mediated chloride/bicarbonate exchange in canalic-

ular rat liver plasma membrane vesicles. J.
- MEIER, P. J., MEIER-ABT, A. S., AND BOYER, J. L.: Properties of the canalicular
- brane vesicles. J. Biol. Chem. 259: 106122, 10614-10622, 1987.
MEIER, P. J., MEIER-ABT, A. S., BARRETT, C., AND BOYER, J. L.: Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrure, p
-
- taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. J. Biol. Chem. 259: 10614-10622, 1984.
MELIER, D. K. F.: The mechanisms for hepatic uptake and biliary excretion of organic cations. organic cations. *In* Intestinal permeation, ed. by M. Kramer, pp. 196–209,
Excerpta Medica, Amsterdam, The Netherlands, 1977.
MEIJER, D. K. F., BOS, E. S., AND VAN DER LAAN, K. J.: Hepatic transport of
mono- and bisquater
- ELJER, D. K. F., BOS, E. S., AND VAN DER LAAN, K. J.: Hepatic transport of mono- and bisquaternary ammonium compounds. Eur. J. Pharmacol. 11: 371-377, 1970.
ELJER, D. K. F., MoL, W. E. M., MÜLLER, M., AND KURZ, G.: Carrier 35-70, **1990.** MELJER, D. K. F., Mol., W. E. M., MÜLLER, M., AND KURZ, G.: Carrier-mediated transport in the hepatic distribution and elimination of drugs, with special reference to the category of organic cations. J. Pharmacokin. Biopha transport in the hepatic distribution and elimination of drugs, with speceference to the category of organic cations. J. Pharmacokin. Biopharm. 35-70, 1990.
35-70, 1990.
ELIER, D. K. F., AND VAN DER SLULUS, P.: Covalent an
- reference to the category of organic cations. J. Pharmacokin. Biopharm. 18:
35-70, 1990.
MELJER, D. K. F., AND VAN DER SLULJS, P.: Covalent and noncovalent protein
binding of drugs: implications for heptatic clearance, sto **MELIER, D. K. F., AND VAN DER SLULIS, P.: Covalent and noncovalent protein** binding of drugs: implications for hepatic clearance, storage, and cell-specific drug delivery. Pharm. Res. 6: 105-118, 1989.
MELIER, D. K. F., V
-
- cific drug delivery. Pharm. Res. 6: 105-118, 1989.
EUER, D. K. F., VERMEER, G. A., AND KWANT, G.: The excretion of hexaflu-
ronium in man and rat. Eur. J. Pharmacol. 14: 280-285, 1971.
EINDERS, A. E., VANBERGE HENEGOUWEN, ronium in man and rat. Eur. J. Pharmacol. 14: 280–285, 1971.
MEINDERS, A. E., VANBERGE HENEGOUWEN, G. P., WILLEKENS, F. L. A., SCHWERZEL, A. L., RUBEN, A., AND HUYBREGTS, A. W. M.: Biliary lipid and bile acid composition i
- abetes method. Br. Med. J. 142-144, 1978.
MELANDER, A., SARTON, G., WAHLIN, E., SCHERSTEN, B., AND BITZEN, P.
Serum tolbutamide and chorropamide concentration in patients with
abetes mellitus. Br. Med. J. 1: 142-144, 1978.
- 108, 1981.

MELANDER, A., SARTON, G., WAHLIN, E., SCHERSTEN, B., AND BITZEN, P. O.:

Serum toblitamide and chlorpropamide concentration in patients with di-

abetes mellitus. Br. Med. J. 1: 142–144, 1978.

MIMOUNI, V., AND MOUNI, V., AND POISSON, J. P.: Liver fatty acid composition in the spontaneously diabetic BB rat. Arch. Int. Physiol. Biochim. Biophys. 99: 111–122, 1991.
ROUNI, V., AND POISSON, J. P.: Liver fatty acid composition. Biophy
- 1991.

MIN, A. D., CAMPBELL, C. G., AND WOLKOFF, A. W.: Chloride modulates the

activity of the hepatocyte organic anion transporter. Gastroenterology 98:

AGO8, 1990.

MOR, A. M., AND ZAMMIT, V. A.: Selective labelling of
- MOIR, A. M., AND ZAMMIT, V. A.: Selective labelling of hepatic fatty acids in IN, A. D., CAMPBELL, C. G., AND WOLKOFF, A. W.: Chloride modulates the activity of the hepatocyte organic anion transporter. Gastroenterology 98:
A608, 1990.
DER, A. M., AND ZAMMIT, V. A.: Selective labelling of hepatic fa
- activity of the hepatocyte organic anion transporter. Gastroenterology 98:
A608, 1990.
MOIR, A. M., AND ZAMMIT, V. A.: Selective labelling of hepatic fatty acids in
vivo. Studies on the synthesis and secretion of glyceroli **2: 383: 145-149, 1992.**
 2: 2: 383: 145-149, 1992.

MOL, W. E. M., AND MELFER, D. K. F.: Hepatic transport mechanisms for bivalent organic cations. Subcellular distribution and hepato-biliary concentration gradients of Tration gradients of some steroidal muscle relaxants. Biochem. Pharmacol.
2: 383–390, 1990.
MOLLOY, A. M., AND TOMKIN, G. H.: Altered bile in diabetic diarrhoea. Br. Med.
J. 4: 1462–1463, 1978.
MONGOLD, J. J., GROS, G. H.,
-
- **2.** 383-390, 1990.
 2. 383-390, 1990.

DLLOY, A. M., AND TOMKIN, G. H.: Altered bile in diabetic diarrhoea. Br. Med.

J. 4: 1462-1463, 1978.

DNGOLD, J. J., GROS, G. H., VIAN, L., TEP, A., RAMANADHAM, S., SIOU, G.,

DLO **beta-cell morphology. Pharmacol. Toxicol. Toxicol. Antioxidant** morphology. Pharmacol. D. J., GROS, G. H., VIAN, L., TEP, A., RAMANADHAM, S., SIOU, G., DIAZ, J., MCNEILL, J. H., AND SERRANO, J. J.: Toxicological aspects o MOREL, J. MCNEILL, J. H., AND SERRANO, J. J.: Toxicological aspects of
vanadyl sulfate on diabetic rats: effects on vanadium levels and pancreatic
beta-cell morphology. Pharmacol. Toxicol. 67: 192-198, 1990.
MOREL, D. W.,
-
- ration. Biochem. Pharmacol. 33: 3833-3838, 1984.

MORRISON, M. H., AND HAWKSWORTH, G. M.: Glucuronic acid conjugation

hepatic microsomal fractions isolated from streptozotocin-induced diabe

rats. Biochem. Pharmacol. 33: 1989.

1989. ORRISON, M. H., AND HAWKSWORTH, G. M.: Glucuronic acid conjugation b

hepatic microsomal fractions isolated from streptozotocin-induced diabetic

rat. Biochem. Pharmacol. 33: 3833–3838, 1984.

ORRISON, M. H.,
- rats. Biochem. Pharmacol. 33: 3833-3838, 1984.
MORRISON, M. H., AND HAWKSWORTH, G. M.: The effect of activators of glucuronyltransferase in the streptozotocin-induced diabetic rat. Biochem. Pharmacol. 31: 1944–1946, 1982.
 monyltransferase in the streptozotocin-induced diabetic rat. Biochem. Pharmacol. 31: 1944–1946, 1982.
MOSELEY, R. H., AND BOYER, J. L.: Mechanisms of electrolyte transport in the liver and their functional significance. Se
-
- in rate liver basolateral but not cancel and the member of the member of the liver R. H., AND BOYER, J. L.: Mechanisms of electrolyte transport in the liver and their functional significance. Semin. Liver Dis. 5: 122-135,
- MOSELEY, R. H., AND BOYER, J. L.: Mechanisms of electrolyte transport in the
liver and their functional significance. Semin. Liver Dis. 5: 122–135, 1985.
MOSELEY, R. J., MEER, P. J., ARONSON, P. S., AND BOYER, J. L.: Na-H on the excretion of bilingham of the exchange in rat liver based at the exchange in rat liver based
at the exchange in rat liver based at the exchange in rat liver based
at the excretion of 55-643, 1986.
ULLER-OERLINGHAUSE

PHARM
REV

spet

 $\, \mathbb G \,$

spet

- DIABETES MELLITUS AND H
MULLER-OERLINGHAUSEN, B., HASSELBLATT, A., AND JAHNS, R.: Impaired he-
patic synthesis of glucuronic acid conjugates in diabetic rats. Life Sci. 6:
1529–1533, 1967.
- MULLER-OERLINGHAUSEN, B., HASSELBLATT, A., AND JAHNS, R.: Impaired hepatic synthesis of glucouronic acid conjugates in diabetic rats. Life Sci. 6:
1529–1533, 1967.
MUNOZ, M. E., VILLANUEVA, G. R., GONZALEZ, J., AND ESTELLE MUNOZ, M. E., VILLANUEVA, G. R., GONZALEZ, J., AND ESTELLER, A.: Reglucose reabsorption from bile on hyperglycaemia-induced cholestasis is rabbit. J. Hepatol. 3: 66-71, 1986.
MUNOZ, M. E., GONZALEZ, J., AND ESTELLER, A.: E UNOZ, M. E., VILLANUSVA, G. R., GONZALEZ, J., AND ESTELLER, A.: Role of glucose reabsorption from bile on hyperglycaemia-induced cholestasis in the rabbit. J. Hepatol. 3: 66-71, 1986.
UNOZ, M. E., GONZALEZ, J., AND ESTELLE glucose reabsorption from bile on hyperglycaemia-induced cholestasis in the rabbit. J. Hepatol. 3: 66-71, 1986.
MUNOZ, M. E., GONZALEZ, J., AND ESTELLER, A.: Effect of glucose administration on bilirubin excretion in the r
-
-
- **J., J., MACARA, I. G., KUBENA, L. F., PHILLIPS, T. D., AND NIELSEN, F. H., GRANTHAM, J. J., MACARA, I. G., KUBENA, L. F., PHILLIPS, T. D., AND NIELSEN, F. H.: Role of vanadium in biology. Fed. Proc. 45: 123-132, 1985.

SC**
- NECHAY, B. R., NANNINGA, L. B., NECHAY, P. S. E., POST, R. L., GRANTHAM,
J. J., MACARA, I. G., KUBENA, L. F., PHILLIPS, T. D., AND NIELSEN, F. H.: Role
of vanadium in biology. Fed. Proc. 45: 123-132, 1985.
NEEF, C., KEULEM J. J., MACARA, I. G., KUBENA, L. F., PHILLIPS, T. D., AND NI of vanadium in biology. Fed. Proc. 45: 123-132, 1985.
EEF, C., KEULEMANS, K. T. P., AND MELJER, D. K. F.: Hepper compounds. Biochem. Pharmacol. 33: 3977-3990, 19 of vanadium in biology. Fed. Proc. 45: 123-132, 1985.
NEEF, C., KEULEMANS, K. T. P., AND MEIJER, D. K. F.: Hepatic uptake
biliary excretion of organic cations. I. Characterization of three new r
compounds. Biochem. Pharmac
- ERF, C., KEULEMANS, K. T. P., AND MELJER, D. K. F.: Hepatic uptake a biliary excretion of organic cations. I. Characterization of three new motomonium compounds. Biochem. Pharmacol. 33: 3977–3990, 1984a.
EER, C., OOSTING, biliary excretion of organic cations. I. Characterization of three new model
compounds. Biochem. Pharmacol. 33: 3977-3990, 1984a.
NEEF, C., OOSTING, R., AND MELJER, D. K. F.: Structure-pharmacokinetics
relationship of quat
-
- metabolism in the diabetic rat. Metabolism 23: 495-503, 1974.
NERVI, F. O., SEVERIN, C. H., AND VALDIVIESO, V. D.: Bile acid pool changes and
regulation of cholate synthesis in experimental diabetes. Biochim. Biophys.
Acta
- NISHIDA, T., GATMATTAN, Z., CHE, M., AND ARIAS, I. M.: Rat liver canalicular
- regulation of cholate synthesis in experimental diabetes. Biochim. Biophys.
Acta 529: 212–223, 1978.
NISHIDA, T., GATMATAN, Z., CHE, M., AND ARIAS, I. M.: Rat liver canalicular
membrane vesicles contain an ATP-dependent bi membrane vesicles contain an ATP-dependent bile ac
Proc. Natl. Acad. Sci. USA 88: 6590-6594, 1991.
SHIDA, T., HARDENBROOK, C., GATMAITAN, Z., AND ARIA
dent organic anion transport system in normal and TR-
membranes. Am. J. membrane vesicles contain an ATP-dependent bile acid transport system.

NISHIDA, T., HARDENBROOK, C., GATMAITAN, Z., AND ARIAS, I. M.: ATP-dependent organic anion transport system in normal and TR⁻ rat liver canalicular

- dent organic anion transport system in normal and TR⁻ rat liver canalicular membranes. Am. J. Physiol. 262: G629-G635, 1992.

XKATSUKA, M., SAKURAI, H., AND KAWADA, J.: Generation of alloxan fredicals in chemical and bio
- membranes. Am. J. Physiol. 282: G629-G635, 1992.

NUKATSUKA, M., SAKURAI, H., AND KAWADA, J.: Generation of alloxan free

radicals in chemical and biological systems—implication in the diabetogenic

action of alloxan. Bioc 0618, **1983.** radicals in chemical and biological systems—implication in the diabetogenic
action of allocan. Biochem. Biophys. Res. Commun. 165: 278–283, 1989.
OEKNER, R. K., WENSCHMIDT, B. R., ZIMMERLI, B., AND MEIER,
DERR. R. WENSCHMI
- OEHLER, R., REICHEN, J., ZYSSET, T., AND BRADLEY, S. E.: Non-micelle forming **Example 1988**
6418, 1983.
GG18, 1983.
648–651, 1989.
WRA, Y., SUZUKI, OGURA, Y., SUCHEN, J., ZYSSET, T., AND BRADLEY, S. E.: Non-micelle forming
bile acids increase biliary gentamicin excretion in the rat. J. Pharm. Sci. 78:
648-651, 1989.
OGURA, Y., SUZURI, T., YAMAMOTO, Y., AND OGURA, M.:
- OLSON, J. R., AND FUJIMOTO, J. M.: Demonstration of a D-glucose transport

345-651, 1989.

345-449, 1991.

245-449, 1991.

245-449, 1991.

245-449, 1991.

245-449, 1991.

245-213-218, 218-218, 218-218, 218-219, 1980.

247-
-
- the metabolism of bile acids in diabetic rats. Biol. Chem. Hoppe-Seyler 372:
345-349. 1991.
OLSON, J. R., MD FUJIMOTO, J. M.: Demonstration of a D-glucose transport
system in the biliary tree of the rat by use of the segme system in the biliary tree of the rat by use of the segmented retrograde
intrabiliary injection technique. Biochem. Pharmacol. 29: 213-219, 1980.
OLTMANNS, V. D., DENNIN, D. E., PENTZ, R., AND SIEGERS, C.-P.: Antipyrin-
cl
- **A. H., AND TOMKIN, G. H.:** Chornel metabolismus bei patienten mit diabetes mellitus. Z. Gastroenterol. **22:** 598-601, 1984.
 CMEARA, N. M. G., DEVERY, R. A. M., OWENS, D., COLLINS, P. B., JOHNSON, A. H., AND TOMKIN, G. H MEARA, N. M. G., DEVERY, R. A. M., OWENS, D., COLLINS, P. B., JOHNSON, A. H., AND TOMKIN, G. H.: Cholesterol metabolism in alloxan-induced diabetical photos. The Server, R. A. M., OWENS, D., COLLINS, P. B., JOHNSON, MEARA,
- A. H., AND TOMKIN, G. H.: Cholesterol metabolism in alloxan-induced diabetic rabbits. Diabetes 39: 626–633, 1990.
MEARA, N. M. G., DEVERY, R. A. M., OWENS, D., COLLINS, P. B., JOHNSON, A. H., AND TOMKIN, G. H.: Serum lipop
- **OOMEARA, N. M. G., DEVERY, R. A. M., OWENS, D., COLLINS, P. B., JOHNSON, A. H., AND TOMKIN, G. H.: Serum lipoproteins and cholesterol metabolism in two hypercholesterolemic rabit models. Diabetedlogia 34: 139-143, 1991.
W** Streptocin-diabetic rats. Mol. Endocrinol. However, 1. 23, 1993.

We hypercholesterolemic rabbit models. Diabetologia 34: 139-143, 1991.

OOI, G. T., TSENG, L. Y., TRAN, M. Q., AND RECHLER, M. M.: Insulin rapidly

decrease on the rate of the rate of protein-like growth synthesis in the rate of protein-1 gene transcription in streptozotocin-diabetic rats. Mol. Endocrinol. 6: 2219-2228, 1992.
IN, V. M., AND GARLICK, P. J.: Effect of streptozot
-
- **PAIN, V. M., AND GARLICK, P. J.: Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J.
Biol. Chem. 249: 4510-4514, 1974.
PAST, M. R., AND COOK, D. E.: E** chem. 249: 4510-4514, 1974.

Pharmacol. Chem. 249: 4510-4514, 1974.

PART, M. R., AND COOK, D. E.: Effect of diabetes on rat liver cytochrome P-450.

Evidence for a unique diabetes-dependent rat liver cytochrome P-450.

Ch
- Evidence for a unique diabetes-dependent rat liver cytochrome P-450. Bio-
chem. Pharmacol. 31: 3329–3334, 1982.
PENG, R., TENNANT, P., LORR, N. A., AND YANG, C. S.: Alterations of microsomal
monocygenese system and carcino
- PENG, R., TENNANT, P., LORR, N. A., AND YANG, C. S.: Alterations of microsomal
monooxygenase system and carcinogen metabolism by streptozotocin-in-
duced diabetes in rats. Carcinogenesis 4: 703–708, 1983.
PETZINGER, E.: Ca Noncontry, H. H. Chemical Chemical Chemical Chemical States in Francesco and Carcinogen metabolism by streptozotocin-in-
duced diabetes in rats. Carcinogenesis 4: 703–708, 1983.
TZINGER, E.: Canalicular transport: experime Verzinger, E.; Canalicular transport: experimental models, morphology requirements and transport processes. *In* Biliary Excretion of Drugs and Other Chemicals, ed. by C. P. Siegers and J. B. Watkins III, Progress in Pharm
-
- Pharmacology and Clinical Pharmacology, vol. 8(4), pp. 49–87, Fischer SADAH

PETZINGER, E., KINNE, R. K. H., AND SIES, H., EDS.: Hepatic Transport of chol

Organic Substances, 433 pp., Springer-Verlag, Berlin, 1989a.

PETZ Verlag, Stuttgart, 1991.

PETZINGER, E., KINNE, R. K. H., AND SIES, H., EDS.: Hepatic Transport of Organic Substances, 433 pp., Springer-Verlag, Berlin, 1989a.

PETZINGER, E., MULLER, N., FOLLMANN, W., DEUTSCHER, J., AND K Organic Substances, 433 pp., Springer-Verlag, Berlin, 1989a.
PETZINGER, E., MULLER, N., FOLLMANN, W., DEUTSCHER, J., AND KINNE, R. K.
H.: Uptake of bumetamide into isolated rat hepatocytes and primary liver
cell cultures,
- TZINGER, E., MULLER, N., FOLLMANN, W., DEUTSCHER, J., AND KINNE, R. K.
H.: Uptake of bumetamide into isolated rat hepatocytes and primary liver
cell cultures, Am. J. Physiol. 256: G78-G86, 1989b.
TZINGER, E., ZIEGLER, K., cell cultures, Am. J. Physiol. 256: G78-G86, 1989b.

PETZINGER, E., ZIEGLER, K., AND FRIMMER, M.: Occurrence of a multispecific

transporter for the hepatocellular accumulation of bile acids and various

cyclopeptides. In ransporter for the hepatocellular accumulation of bile acids and various cyclopeptides. In Bile Acids and the Liver, ed. by G. Paumgartner, A. Stiehl and W. Gerok, pp. 111-124, MTP Press, Lancaster, 1987.
PHILLIPS, M. J.,
-
-
- PORTE, D., AND HALTER, **J. B.:** The endocrine pancreas and diabetes mellitus. *In* Textbook of Endocrinology, ed. by R. H. Williams, 6th ed., pp. 716-843, EPATOBILIARY FUNCTION 21

PORTE, D., AND HALTER, J. B.: The endocrine pancreas and diabetes mellitus.

In Textbook of Endocrinology, ed. by R. H. Williams, 6th ed., pp. 716–843,

WB Saunders, Philadelphia, 1981.

POTTER, B
- RTE, D., AND HALTER, J. B.: The endocrine pancreas and diabetes mellitus.

In Textbook of Endocrinology, ed. by R. H. Williams, 6th ed., pp. 716–843,

WB Saunders, Philadelphia, 1981.

WTER, B. J., BLADES, B. F., SHEPARD, *In* Textbook of Endocrinology, ed.
WB Saunders, Philadelphia, 1981
prime, B. J., BLADES, B. F., SHEPAR
kinetics of BSP uptake by rat liv
Acta 898: 159-171, 1987.
uCE, V. F., AND JOLLOW, D. J.: WB Saunders, Philadelphia, 1981.
POTTER, B. J., BLADES, B. F., SHEPARD, M., THUNG, S. M., AND BERK, P. D.: The
kinetics of BSP uptake by rat liver sinusoidal vesicles. Biochim. Biophys.
Acta 898: 159-171, 1987.
PRICE, V. F FITER, B. J., BLADES, B. F., SHEPARD, M., THUNG, S. M., AND BERK, P. D.: The kinetics of BSP uptake by rat liver sinusoidal vesicles. Biochim. Biophys. Acta 898: 159-171, 1987.
Acta 898: 159-171, 1987.
acce, V. F., AND JOL
- kinetics of H
Acta 898: 18
107 N. F., acetaminoph
513, 1982.
107 N. F., A Acta 898: 159-171, 1987.

PRICE, V. F., AND JOLLOW, D. J.: Increased resistence of diabetic rats to

acetaminophen-induced hepatotoxicity. J. Pharmacol. Exp. Ther. 220: 504-

513, 1982.

PRICE, V. F., AND JOLLOW, D. J.: St ICE, V. F., AND JOLLOW, D. J.: Increased resistence of diabetic rats to acetaminophen-induced hepatotoxicity. J. Pharmacol. Exp. Ther. 220: 504–513, 1982.
Exp. Ther. 220: 504–513, 1982. Strain differences in susceptibility
- acetaminophen-induced hepatotoxicity. J. Pharmacol. Exp. Ther. 220: 504–513, 1982.
PRICE, V. F., AND JOLLOW, D. J.: Strain differences in susceptibility of normal
and diabetic rats to acetaminophen hepatotoxicity. Biochem.
- HERICE, V. F., AND JOLLOW, D. J.: Strain differences in susceptibility of normal
and diabetic rats to acetaminophen hepatotoxicity. Biochem. Pharmacol. 35:
687–695, 1996.
PUGAZHENTHI, S., AND KHANDELWAL, R. L.: Insulin-lik
- hepatic rates. Diabetes 39: 821-827, 1990.

RAHMAN, K., AND COLEMAN, R.: Selective biliary lipid secretion at low bile-salt-

output rates in the isolated perfused rat liver. Biochem. J. 237: 301-304,

1986.

REDGRAVE, T. HMAN, K., AND COLEMAN, R.: Selective biliary lipid secretion at low bile-salt-
output rates in the isolated perfused rat liver. Biochem. J. 237: 301–304,
1986.
COGRAVE, T. G., AND CALLOW, M. J.: The effect of insulin defic
-
- relationship of quaternary ammonium compounds. Elimination and distri-

1986.

110, 1984b.

110, 1984b.

110, 1984b.

NERVI, F. O., GONZALEZ, A., AND VALDIVIESO, V. D.: Studies on cholesterol

NERVI, F. O., GONZALEZ, A., A output rates in the isolated perfused rat liver. Biochem. J. 237: 301-304, 1986.
REDGRAVE, T. G., AND CALLOW, M. J.: The effect of insulin deficiency on the metabolism of lipid emulsion models of triacylglycerol-rich lipop rats. Metabolism 39: 1-10, 1990.
REDMAN, D. R., AND PRESCOTT, L. F.: Failure of induction of liver microsocency energy and the maturity-onset diabetes. Diabetes 22: 210-1
1973.
REICHEN, J., AND PAUMGARTNER, G.: Inhibition EDMAN, D. R., AND PRESCOTT, L. F.: Failure of induction of liver microson enzymes by tolbutamide in maturity-onset diabetes. Diabetes 22: 210-2
1973.
ICCHEN, J., AND PAUMGARTNER, G.: Inhibition of hepatic Na⁺-K⁺- aden
	- enzymes by tolbutamide in maturity-onset diabetes. Diabetes 22: 210–211,
1973.
REICHEN, J., AND PAUMGARTNER, G.: Inhibition of hepatic Na⁺-K⁺- adenosin-
etriphosphatase in taurolithocholate-induced cholestasis in the r
	- REICHEN, J., AND PAUMGARTNER, G.: Inhibition of hepatic Na⁺-K⁺- adenosin-
etriphosphatase in taurolithocholate-induced cholestasis in the rat. Experi-
entia 35: 1186–1188, 1979.
REINKE, L. A., STOHS, S. J., AND ROSENBE REINKE, L. A., STOHS, S. J., AND ROSENBERG, H.: Increased aryl hydroxylase
activity in hepatic microsomes from streptozotocin-diabetic female rats.
Xenobiotica 8: 769-778, 1979.
RENNER, L. A., STOHS, S. J., AND ROSENBERG,
	-
	- mixed-function mono-oxygenase enzymes in streptozotocin-induced diabe
rats. Xenobiotica 8: 611–619, 1978.
RENNER, E. L., LAKE, J. R., SCHARSCHMIDT, B. R., ZIMMERLI, B., AND MEI
P. J.: Rat hepatocytes exhibit basolateral Na P. J.: Rat hepatocytes exhibit basolateral Na⁺/HCO₃ cotransport. J. Clin.
Invest. 83: 1225-1235, 1989.
RERUP, C. C.: Drugs producing diabetes through damage of the insulin secreting cells. Pharmacol. Rev. 22: 485-517,
	-
	- Invest. 83: 1225–1235, 1989.

	ERUP, C. C.: Drugs producing diabetes through damage of ting cells. Pharmacol. Rev. 22: 485–517, 1990.

	FRAN, H., AND PORTE, D., EDS.: Ellenberg and Rifkin's D

	Theory and Practice, 4th ed., E Invest. 83: 1225–1235, 1989.
RERUP, C. C.: Drugs producing diabetes through damage of the insulin secreting
reg cells. Pharmacol. Rev. 22: 485–517, 1980.
RIFKIN, H., AND PORTE, D., EDS.: Ellenberg and Rifkin's Diabetes Mel
	-
	- ing cells. Pharmacol. Rev. 22: 485-517, 1980.
RIFKIN, H., AND PORTE, D., EDS.: Ellenberg and Rifkin's Diabetes Mellitus:
Theory and Practice, 4th ed., Elsevier, New York, 1990.
RITTER, A., LOSCAR, M., RICHTER, W. O., AND M Theory and Practice, 4th ed., Elsevier, New York, 1990.
TTER, A., LOSCAR, M., RICHTER, W. O., AND SCHWANDT, P.: Lipoprotein (a) in
diabetes mellitus. Clin. Chim. Acta 214: 45–54, 1993.
DLAND, I. A., AND MARANHAO, R. C.: Tr RITTER, A., LOSCAR, M., RICHTER, W. O., AND SCHWANDT, P.: Lipoprotein (a) in diabetes mellitus. Clin. Chim. Acta 214: 45-54, 1993. ROLAND, I. A., AND MARANHAO, R. C.: Transfer of phospholipids and cholesterol from triglyce DLAND, I. A., AND MARANHAO, R. C.: Transfer of phospholipin
from triglyceride-rich emulsions to HDL in rats treated
pylthiouracil or ethanol. Brazil. J. Med. Biol. Ree. 26: 109
pylthiouracil or ethanol. Here are not per sy
	-
	- From triglyceride-rich emulsions to HDL in rats treated with alloxan, pro-
pylthiouracil or ethanol. Brazil. J. Med. Biol. Res. 26: 109-118, 1993.
ROTHSTEIN, A.: The Na⁺/H⁺ exchange system in cell pH and volume control Rouer, E., MAHU, J. L., COLUMELLI, S., DANSETTE, P., AND LEROUX
Induction of drug metabolizing enzymes in the liver of diabetic michaeles.
Chimie 64: 961-967, 1982.
ROUER, E., MAHU, J. L., DANSETTE, P., AND LEROUX, J. P.: UUER, E., MAHU, J. L., COLUMELLI, S., DANSETTE, P., AND LEROUX, J. P.:
Induction of drug metabolizing enzymes in the liver of diabetic mice. Bio-
chimie 64: 961-967, 1982.
UUER, E., MAHU, J. L., DANSETTE, P., AND LEROUX, J
	-
	- COUSE, E., MAHU, J. L., DANSETTE, P., AND LEROUX, J. P.: UDP-glucuronosyl-
ROUSE, E., MAHU, J. L., DANSETTE, P., AND LEROUX, J. P.: UDP-glucuronosyl-
transferase, epoxide hydrolase and glutathione S-transferase activities transferase, epoxide hydrolase and glutathione S-transferase activities in
the liver of diabetic mice. Biochim. Biophys. Acta 676: 274-277, 1981.
ROUER, E., LEMOINE, A., CRESTEIL, T., ROUET, P., AND LEROUX, J. P.: Effects ROUER, E., LEMOINE, A., CRESTEIL, T., ROUET, P., AND LEROUX, J. P.: Effects of genetic or chemically induced diabetes on imipramine metabolism. Respective involvement of flavin monooxygenase and cytochrome P-450-dependent
	- tive involvement of flavin monocxygenase and cytochrome P-450-dependent
monocxygenases. Drug Metab. Dispos. 15: 524-528, 1987.
ROUER, E., AND LEROUX, J.: Liver microsomal cytochrome P-450 and related
monocxygenase activiti
	- and lean streptozotocin-treated mice. Biochem. Pharmacol. 29: 1959–1962, 1980.
1980.
JETZ, ST., FRICKER, G., HUGENTOBLER, G., WINTERHALTER, K., KURZ, G., AND
MEIER, P. J.: Isolation and characterization of the putative can 1980.
RUETZ, ST., FRICKER, G., HUGENTOBLER, G., WINTERHALTER, K., KURZ, G., AND
MEIER, P. J.: Isolation and characterization of the putative canalicular bile
salt transport system of rat liver. J. Giol. Chem. 2622: 11324-1 PETZ, ST., FRICKER, G., HUGENTOBLER, G., WIN
MEIER, P. J.: Isolation and characterization of
salt transport system of rat liver. J. Biol. Che
JSSELL, J. Q., AND KLAASSEN, C. D.: Biliary exc
Pharmacol. Exp. Ther. 186: 455-4
	-
	- MEIER, P. J.: Isolation and characterization of the putative canalicular bile
salt transport system of rat liver. J. Biol. Chem. 262: 11324-11330, 1987.
RUSSELL, J. Q., AND KLAASSEN, C. D.: Biliary excretion of cardiac gly RYAN, D. E., RAMANATHAN, L., IIDA, S., THOMAS, P. E., HANIU, M., SHIVELY, J. E., LIEBER, C. S., AND LEVIN, W.: Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. J. Biol. Chem
	- 230. SADAHERO, R., TAKEUCHI, N., KUMAGAI, A., AND YAMAMURA. Y.: Studies of cholesterol metabolism in experimental diabetic rat. Endocr. Jpn. 17: 225-232, 1970.
SADAHERO, R., TAKEUCHI, N., KUMAGAI, A., AND YAMAMURA. Y.: Stu
	- cholesterol metal
232, 1970.
LMELA, P. I., SOT.
drug-metabolizin
788–794, 1980.
TO, C., MATUDA, J SALMELA, P. I., SOTANIEMI, E. A., AND PELKONEN, R. O.: The evaluation of the drug-metabolizing capacity in patients with diabetes mellitus. Diabetes 29:
788–794, 1980.
SATO, C., MATUDA, Y., AND LIEBER, C. S.: Increased hep
	- SATO, C., MATUDA, Y., AND LIEBER, C. S.: Increased hepatotoxicity of acetamin-ophen after chronic ethanol consumption in the rat. Gastroenterol. 80:
140-148, 1981.
SAUDEK, C. D., AND EDER, H. A.: Lipid metabolism in diabet TO, C., MATUDA, Y., AND LII
ophen after chronic ethal
140–148, 1981.
UDEK, C. D., AND EDER, H.
Med. 66: 843–852, 1979.
HARSCHMIDT, B. F., WAGG
	- SAUDEK, C. D., AND EDER, H. A.: Lipid metabolism in diabetes mellitus. Am. J. ophen after chronic ethanol consumption in the rat. Gastroenterol. 80:
140–148, 1981.
SAUDER, H. A.: Lipid metabolism in diabetes mellitus. Am. J.
Med. 66: 843–852, 1979.
SCHARSCHMIDT, B. F., WAGGONER, J. G., AND BERK, P. and 140–148, 1981.

	SAUDEK, C. D., AND EDER, H. A.: Lipid metabolism in diabetes mellitus. And Med. 66: 843–852, 1979.

	SCHARSCHMDT, B. F., WAGGONER, J. G., AND BERK, P. D.: Hepatic organion uptake in the rat. J. Clin. Inv
	-
	-

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

- WATKINS AN
ferase during starvation and alloxan diabetes. Hoppe-Seyler's Z. Physiol.
Chem. **344:** 25–33, 1966.
SCHWARTZ, C. J., VALENTE, A. J., SPRAGUE, E. A., KELLEY, J. L., CAUATTE, A. J.,
AND ROZEK, M. M.: Pathogenesis ferase during starvation and alloxan diabetes. Hoppe-Seyler's Z. Physiol.
Chem. 344: 25-33, 1966.
HWARTZ, C. J., VALENTE, A. J., SPRAGUE, E. A., KELLEY, J. L., CAUATTE, A. J.,
AND ROZEK, M. M.: Pathogenesis of the atherosc Chem. **344:** 25-33, 1966.

SCHWARTZ, C. J., VALENTE, A. J., SPRAGUE, E. A., KELLEY, J. L., CAUATTE, A.

AND ROZEK, M. M.: Pathogenesis of the atherosclerotic lesion: implication

for diabetes mellitus. Diabetes Care 15: 11 HWARTZ, C. J., VALENTE, A. J., SPRAGUE, E. A.,
AND ROZEK, M. M.: Pathogenesis of the ather
for diabetes mellitus. Diabetes Care 15: 1156
OUT, J., AND POFFENBARGER, P. L.: Pharmacog
olism in humans. Diabetes 28: 41-51, 1979
- AND ROZEK, M. M.: Pathogenesis of the atherosclerotic lesion: implications
for diabetes mellitus. Diabetes Care 15: 1156-1167, 1992.
SCOTT, J., AND POFFENBAGER, P. L.: Pharmacogenetics of tolbutamide metab-
olism in human for diabetes mellitus. Diabetes Care 15: 1156-1167, 1992.
COTT, J., AND POFFENBARGER, P. L.: Pharmacogenetics of tolbutamide metal
olism in humans. Diabetes 28: 41-51, 1979.
EKAR, N., AND GOVINDASAMI, S.: Effects of vanada
-
- SCOTT, J., AND POFFENBARGER, P. L.: Pharmacogenetics of tolbutamide metabolism in humans. Diabetes 28: 41-51, 1979.
SEKAR, N., AND GOVINDASAMI, S.: Effects of vanadate on plasma lipoprotein
profiles in experimental diabeti XRA, N., KANTHASAMY, S., WILLIAM, S., SUBRAMANIAN, S., AND GOVINDASAMY, S.: Insulinic actions of vanadate in diabetic rats. Pharmacol. Res. 207-217, 1990.
 22: 207-217, 1990.
 12: E.: Diabetes in animals. In Ellenberg
- DASAMY, S.: Insulinic action.
22: 207–217, 1990.
KAFRIR, E.: Diabetes in anima
Theory and Practice, 4th Ec
Elsevier, New York, 1990.
IECHTER, Y.: Insulin-mimeti **SHAFRIR, E.: Diabetes in animals.** *In* Ellenberg and Rifkin's Diabetes Mellitus:
Theory and Practice, 4th Ed., ed. by H. Rifkin and D. Porte, pp. 299–340,
Elsevier, New York, 1990.
SHECHTER, Y.: Insulin-mimetic effects o SHAFRIR, E.: Diabetes in animals. In Ellenberg and Rifkin's Diabetes Mellitus:

Theory and Practice, 4th Ed., ed. by H. Rifkin and D. Porte, pp. 299-340,

SHECHTER, Y.: Insulin mimetic effects of vanadate: possible implica
-
- Elsevier, New York, 1990.

ECHTER, Y.: Insulin-mimetic effects of vanadate: p99sile implications in ture treatment of diabetes. Diabetes 39: 1-5, 1990.

IISHEVA, A., GEFEL, D., AND SHECHTER, Y.: Insulinike effects of zinc IECHTER, Y.: Insulin-mimetic effects of vanadate: possible implications folture treatment of diabetes. Diabetes 39: 1-5, 1990.
IISHEVA, A., GEFEL, D., AND SHECHTER, Y.: Insulinlike effects of zinc ion induction and invitio SHISHEVA, A., GEFEL, D., AND SHECHTER, Y.: Insulinlike effects of zinc ion in vitro and in vivo: preferential effects on desensitized adjpocytes and induction of normoglycemia in streptozotocin-induced rats. Diabetes 41: 9
- tion of normoglycemia in streptozotocin-induced rats. Diabetes 41: 982–988, 1992.

1992.

RGERS, C.-P.: In vivo biliary excretion and the isolated perfused liver preparation. In Biliary Excretion of Drugs and other Chemica 1992.

SIEGERS, C.-P.: In vivo biliary excretion and the isolated perfused liver pre

aration. In Biliary Excretion of Drugs and other Chemicals, ed. by C.-

Siegers and J. B. Watkins, III, Progress in Pharmacology and Cli
- Siegers and J. B. Watkins
Pharmacology, vol. 8(4), pp.
EGERS, C.-P., LOESER, W., Alphen in diabetic and hypertline
macol. 47: 345-365, 1985.
EGERS, C.-P., AND SCHUTT, A Pharmacology, vol. 8(4), pp. 27-32, Fischer Verlag, Stuttgart, 1991.
SIEGERS, C.-P., LOESER, W., AND YOUNES, M.: Biliary excretion of acetamino-
phen in diabetic and hyperthyroid rats. Res. Commun. Chem. Pathol. Pharmacol. EGERS, C.-P., LOESER, W., AND YOUNES, M.: Biliary excretion of accepten in diabetic and hyperthyroid rats. Res. Commun. Chem. Pathe macol. 47: 345-365, 1985.
macol. 47: 345-365, 1985.
EGERS, C.-P., AND SCHUTT, A.: Dose-dep
-
- phen in diabetic and hyperthyroid rats. Res. Commun. Chem. Pathol. Pharmacol. 47: 345-365, 1985.
SIEGERS, C.-P., AND SCHUTT, A.: Dose-dependent biliary and renal excretion of paracetamol in the rat. Xenoxoogy (Basel) 18: 1 macol. 47: 345–365, 1985.

SIEGERS, C.-P., AND SCHUTT, A.: Dose-dependent biliary and renal excretion of

paracetamol in the rat. Pharmacology (Basel) 18: 175–179, 1979.

SIEGERS, C.-P., ROZMAN, K., AND KLAASSEN, C. D.: Bi paracetamol in the rat. Pharmacology (Basel) 18: 175-179, 1979.
SIEGERS, C.-P., ROZMAN, K., AND KLAASSEN, C. D.: Biliary excretion and enterchepatic circulation of acetaminophen in the rat. Xenobiotica 13: 591-596, 1983.
 SIEGERS, C.-P., ROZMAN, K., AND KLAASSEN, C. D.: Biliary excretion and e
terohepatic circulation of acetaminophen in the rat. Xenobiotica 13: 59
596, 1983.
SIEGERS, C.-P., AND WATKINS III, J. B., EDS.: Biliary Excretion of
-
- BGERS, C.-P., AND WATKINS III, J. B., EDS.: Biliary Excretion of Drugs and Other Chemicals, Progress in Pharmacology and Clinical Pharmacology, Vol. 8(4), Fischer Verlag, Stuttgart, 1991.
E8, H.: Glutathione conjugate tran Vol. 8(4), Fischer Verlag, Stuttgart, 1991.
SIES, H.: Glutathione conjugate transport in hepatic elimination of electro-
philes. In Hepatic Tennsport of Organic Substances, ed. by E. Petzinger,
R.K. H. Kinne, and H. Sies,
- SIES, H.: Glutathione conjugate transport in hepatic elimination of electro-
philes. In Hepatic Transport of Organic Substances, ed. by E. Petzinger,
R. K. H. Kinne, and H. Sies, pp. 121-130, Springer Verlag, Berlin, 1989. capacity is due to increased cholic acid receptors. J. Clin. Invest. 70: 401-411, 1982.
SIMON, J. A.: Ascorbic acid and cholesterol gallstones. Med. Hypotheses 40:
SINGER, S. S., MARTIN, V., AND FEDERSPIEL, M.: Enzymatic s
-
- 411, 1982.
MON, J. A.: Ascorbic acid and cholesterol gallstones. Med. Hypotheses 40:
81–84, 1993.
WGER, S. S., MARTIN, V., AND FEDERSPIEL, M.: Enzymatic sulfation of ste-
roids. XII. The effect of streptozotocin on hepatic MON, J. A.: Ascorbic acid and cholesterol gallstones. Med. Hypotheses 40:
81–84, 1993.
NGER, S. S., MARTIN, V., AND FEDERSPIEL, M.: Enzymatic sulfation of ste-
roids. XII. The effect of streptozotocorticoid sulfotransferas SINGER, S. S., MARTIN, V., AND FEDERSPIEL, M.: Enzymatic sulfation of sterioids. XII. The effect of streptozotocin on hepatic cortisol sulfation and on the individual hepatic glucocorticoid sulfortansferases in male rats.
- the individual hepatic glucocorticoid sulfotransferases in male rats. Horm.
Metab. Res. 13: 45–49, 1981.
NGH, R. E., RASTOGI, S. S., GUPTA, R. K., SHARMA, V. K., AND SINGH, R. G.:
Can a diet rich in chromium and other mine Metab. Res. 13: 45–49, 1981.

SINGH, R. E., RASTOGI, S. S., GUPTA, R. K., SHARMA, V. K., AND SINGH, R. G.:

Can a diet rich in chromium and other minerals modulate blood sugar and

blood lipids in noninsulin dependent diab
- blood lipids in noninsulin dependent diabetes mellitus? Trace Elem. Med
157–162, 1992.
SIPPEL, C. J., ANANTHANARAYANAN, M., AND SUCHY, F. J.: Isolation and ch
acterization of the canalicular membrane bile acid transport pr
- FPEL, C. J., ANANTHANARAYANAN, M., AND SUCHY, F. J.: Isolation and cacterization of the canalicular membrane bile acid transport protein of liver. Am. J. Physiol. 2568: G728-G737, 1990.
liver. Am. J. Physiol. 2568: G728-G7 raphylant Science and chronic diabetesimply. Life Sci. 49: 1301-1308, 1991. The Scienc
- tion changes in r
raphy. Life Sci. 4
raphy. Life Sci. 4
ETT, P., AND JOB
mellitus on hepa
287–289, 1985.
ETT, P.: Sex-depe raphy. Life Sci. 49: 1301–1308, 1991.
SKETT, P., AND JOELS, L. A.: Different effects of acute and chronic diabetes
mellitus on hepatic drug metabolism in the rat. Biochem. Pharmacol. 34:
SKETT, P.: Sex-dependent effect of SKETT, P., AND JOELS, L. A.: Different effects of acute and chronic diabetes
mellitus on hepatic drug metabolism in the rat. Biochem. Pharmacol. 34:
287-289, 1985.
SNOW, P.: Sex-dependent effect of streptozotocin-induced d
-
- Canalicular secretion. Surface of the surface of the secretion. Surface of the SKETT, P.: Sex-dependent effect of streptozotocin-induced diabetes mellitus on hepatic steroid metabolism in the rat. Acta Endocrinol. 111: 217
- **C. S., GELBOIN, H. V., AND JONES, R. S.; The effect of insulin on bile-salt-independent canalicular secretion. Surgery 83: 458–463, 1978.**
C. S., AND JONES, R. S.: The effect of insulin on bile-salt-independent canalicula FORT MUST MESS, R. S.: The effect of insulin on bile-salt-independent
canalicular secretion. Surgery 83: 458-463, 1978.
NG, B. J., MATSUMAGA, T., HARDWICK, J. P., PARK, S. S., VEECH, R. L., YANG,
C. S., GELDON, H. V., AND SONG, B. J., MATSUMAGA, T., HARDWICK, J. P., PARK, S. S., VEECH, R. L., YANG, C. S., GELBOIN, H. V., AND GONZALEZ, F. J.: Stabilization of cytochrome P450j messenger ribonucleic acid in the diabetic rat. Mol. Endocrinol. 1
- P450j messenger ribonucleic acid in the diabetic rat. Mol. Endocrinol. 1:

SORRENTINO, D., POTTER, B. J., AND BERR, P. D.: From albumin to the cyto-

SORRENTINO, D., POTTER, B. J., AND BERR, P. D.: From albumin to the cyto
- SOTTOCASA, G. L., BALDINI, G., SANDRI, G., LUNAZZI, G. C., AND TIRIBELLI, C.:
- XTOCASA, G. L., BALDINI, G., SANDRI, G., LUNAZZI, G. C., AND TIRIBELLI, C.:
Reconstitution in vitro of sulfobromophthalein transport by bilitranslocase. UE
Biochim. Biophys. Acta 685: 123-128, 1982.
ERN, H. AND MELUER, D. Reconstitution in vitro of sulfobromophthalein transport by bilitranslocase.
Biochim. Biophys. Acta 685: 123-128, 1982.
TEEN, H. AND MELJER, D. K. F.: Organic Cations. In Biliary Excretion of Drugs
and Other Chemicals, ed. STEEN, H. AND MELJER, D. K. F.: Organic Cations. In Biliary Excretion of Drugs
and Other Chemicals, ed. by C. P. Siegers and J. B. Watkins III, Progress in
Pharmacology and Clinical Pharmacology, vol. 8(4), pp. 239–272, Fi and Other Chemicals, ed. by C. P. Siegers and J. B. Watkins III, Progress in Pharmacology and Clinical Pharmacology, vol. 8(4), pp. 239-272, Fischer Verlag, Stuttgart, 1991.

EEN, H., OOSTING, R., AND MELJER, D. K. F.: Mec
- Verlag, Stuttgart, 1991.
STEEN, H., OOSTING, R., AND MELJER, D. K. F.: Mechanisms for the uptake of
cationic drugs by the liver: a study with tributylmethylammonium
(TBuMA). J. Pharmacol. Exp. Ther. 2586: 537-543, 1991.
ST

glycemic control of type II diabetes suffice to control diabetic dyslipidemia? SANDERS
glycemic control of type II diabetes
Diabetes Care 15: 638–644, 1992.
OHS, S. J., REINKE, L. A., HASSIN

- STOHS, STONS, S. J., REINKE, L. A., HASSING, J. M., AND ROSENBERG, H.: Benzo-
STOHS, S. J., REINKE, L. A., HASSING, J. M., AND ROSENBERG, H.: Benzo-
[a]pyrene metabolism by hepatic and extrahepatic tissues in streptozotoci [a]pyrene metabolism by hepatic and extrahepatic tissues in streptozotocin-
diabetic rats. Drug Metab. Dispos. 7: 49-51, 1979.
STRANGE, R. C.: Hepatic bile flow. Physiol. Rev. 64: 1055–1102, 1984.
STAPRANS, I., PAN, X. M., Diabetes Care 15: 638-644, 1992.
STOHS, S. J., REINKE, L. A., HASSING, J. M., AND ROSENBERG, H.: Benzo-
[alpyrene metabolism by hepatic and extrahepatic tissues in streptozotocin-
diabetic rats. Drug Metab. Dispos. 7: 49-5
-
- (a) pyrene metabolism by nepatic and extranepatic tissues in streptozotocindiabetic rats. Drug Metab. Dispos. 7: 49–51, 1979.
TaNGE, R. C.: Hepatic bile flow. Physiol. Rev. 64: 1055–1102, 1984.
APRANS, I., PAN, X. M., RAPP
- STRANGE, R. C.: Hepatic bile flow. Physiol. Rev. 64: 1055-1102, 1984.
STAPRANS, I., PAN, X. M., RAPP, J. H., AND FEINGOLD, K. R.: Chylomicron and
chylomicron remnant metabolism in STZ-induced diabetic rats. Diabetes 41:
ST 325–333, 1992.

STREMMEL, W., GERBER, M. A., GLEZEROV, V., THUNG, S. N., KOCHWA, S., AND

BERK, P. D.: Physicochemical and immunohistochemical studies of a sulfo-

branes. J. Clin. Invest. 71: 1769–1805, 1983.

STREMMEL, W BERK, P. D.: Physicochemical and immunohistochemical studies of a sulfo-
bromophthalein- and bilirubin-binding protein from rat liver plasma mem-
branes. J. Clin. Invest. 71: 1769–1805, 1983.
STREMMEL, W., STROHWEYER, G.,
- branes. J. Clin. Invest. 71: 1769–1805, 1983.
STREMMEL, W., STROHMEYER, G., BORCHARD, F., KOCHWA, S., AND BERK, P. D.
Isolation and partial characterization of a fatty acid binding protein in ra
liver plasma membranes. Pro
- REMMEL, W., STROHMEYER, G., BORCHARD, F., KOCHWA, S., AND BERK, P. D.: Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc. Natl. Acad. Sci. USA 82: 4-8, 1985.
REMMEL, Isolation and partial characterization of a fatty acid binding protein in rat
liver plasma membranes. Proc. Natl. Acad. Sci. USA 82: $4-8$, 1985.
REMBLI, W., AND BERK, P. D.: Hepatocellular uptake of sulfobromophthale
in FREMMEL, W.
REMMEL, W.
(BSP) and plasma men
826, 1986.
REMMEL, W. STREMMEL, W., AND BERK, P. D.: Hepatocellular uptake of sulfobromophthale
in (BSP) and bilirubin is selectively inhibited by an antibody to the liver
plasma membrane BSP/bilirubin binding protein. J. Clin. Invest. 78: 822–
- (BSP) and bilirubin is selectively inhibited by an antibody to the liver
plasma membrane BSP/bilirubin binding protein. J. Clin. Invest. 78: 822–
826, 1986.
W., AND DIEDE, H. E.: Cellular uptake of conjugated bilirubin an 826, 1986.

STREMMEL, W., AND DIEDE, H. E.: Cellular uptake of conjugated bilirubin and

sulfobromophthalein (BSP) by the human hepatoma cell line Hep G₂ is

mediated by a membrane BSP/bilirubin binding protein. J. Hepat sulfobromophthalein (BSP) by the human hepatoma cell line Hep G₂ is
mediated by a membrane BSP/bilirubin binding protein. J. Hepatol. 10:
99-104, 1990.
KOM, B. L., LAMRAGOURI, R. N., MORSE, M. L., LAZAR, E. L., WEST, S.
- mediated by a membrane BSP/bilirubin binding protein. J. Hepatol. 10:
99-104, 1990.
STROM, B. L., TAMRAGOURI, R. N., MORSE, M. L., LAZAR, E. L., WEST, S. L.,
STOLLEY, P. D., AND JONES, J. K.: Oral contraceptives and other
- STOLLEY, P. D., AND JONES, J. K.
for gallbladder disease. Clin. Ph
CHY, F. J.: Development of bile fi
Human Gastrointestinal Develo
Raven Press, New York, 1989.
MAI, I., MAEKAWA, T., AND TSU. for gallbladder disease. Clin. Pharmacol. Ther. 39: 335–341, 1986.
SUCHY, F. J.: Development of bile formation and hepatic excretory function. In
Human Gastrointestinal Development, ed. by E. Lebenthal, pp. 623–647,
Ravan
- CHY, F. J.: Development of bile formation and hepatic excretory function. In
Human Gastrointestinal Development, ed. by E. Lebenthal, pp. 623–647,
Raven Press, New York, 1989.
MAI, I., MAEKAWA, T., AND TSUJI, A.: Membrane TAMAI, I., MAEKAWA, T., AND TSUJI, A.: Membrane potential-dependent and carrier-mediated transport of cefpiramide, a cephalosporin antibiotic, in canalicular rat liver plasma membrane vesicles. J. Pharmacol. Exp. Ther.
253
- canalicular rat liver plasma membrane vesicles. J. Pharmacol. Exp. Ther.
255: 537-544, 1990.
TASKINEN, M. R., KAHRI, J., KOIVISTO, V., SHEPHERD, J., AND PACKARD, C. J.:
Metabolism of HDL apolipoprotein A-I and A-II in type SKINEN, M. R., KAHRI, J., KOIVISTO, V., SHEPHERD, J., AND PACKARD, C. J.:
Metabolism of HDL apolipoprotein A-I and A-II in type I (insulin-dependent) diabetes mellitus. Diabetelogia 35: 347-356, 1992.
FPERMAN, H. M., DEWIT
- dent) diabetes mellitus. Diabetologia 35: 347-356, 1992.

TEPPERMAN, H. M., DEWITT, J., AND TEPPERMAN, J.: The effects of streptozoto-

cin diabetes on the activities of rat liver glycosyltransferases. Diabetes 32:

412–41
- FPERMAN, H. M., DEWITT, J., AND TEPPERMAN, J.: The effects of streptozoto-
cin diabetes on the activities of rat liver glycosyltransferases. Diabetes 32:
412–415, 1983.
1924, H., SCHLADT, L., KNEHR, M., AND OESCH, F.: Effe cin diabetes on the activities of rat liver glycosyltransferases. Diabetes 32:
412–415, 1983.
10MAS, H., SCHLADT, L., KNEHR, M., AND OESCH, F.: Effect of diabetes and
starvation on the activity of rat liver epoxide hydrola **412-415, 1983.**
 412-415, 1983.
 **THOMAS, H., SCHLADT, L., KNEHR, M., AND OESCH, F.: Effect of diabetes and starvation on the activity of rat liver epoxide hydrolases, glutathione S-

4291-4297, 1989.**
 4291-4297, 198 starvation on the activity of rat liver epoxide hydrolases, glutathione
transferases and peroxisomal beta-oxidation. Biochem. Pharmacol.
4291-4297, 1989. E., BANDIERA, S., MAINES, S. L., RYAN, D. E., AND LEVIN,
IOMAS, P. E
- transferases and peroxisomal beta-oxidation. Biochem. Pharmacol. 38: 4291-4297, 1989.
THOMAS, P. E., BANDIERA, S., MAINES, S. L., RYAN, D. E., AND LEVIN, W.:
Regulation of cytochrome P-450j, a high-affinity N-nitrosodimeth Regulation of cytochrome P-450j, a high-affinity N-nitrosodimethylamine
demethylase, in rat hepatic microsomes. Biochem. J. 26: 2280-2289, 1987.
THOMSEN, O. O.: Stimulatory effect of bile acids on insulin-induced choleresi
-
-
- FHOMSEN, O. O., AND LARSEN, J. A.: Interaction of insulin, glucagon, and DBcAMP on bile acid-independent bile production in the rat. Scand. J. Gastroenterol. 17: 687-693, 1982a.
THOMSEN, O. O., AND LARSEN, J. A.: Compariso
- IOMSEN, O. O., AND LARSEN, J. A.: Comparison of vanadate and ouabain effects on liver hemodynamics and bile production in the perfused rat liver.
J. Pharmacol. Exp. Ther. 221: 197-205, 1982b.
DDA, A., SHIMENO, H., NAGAMATS **TODA, A., SHIMENO, H., NAGAMATSU, A., AND SHIGEMATSU, H.: Effects of exp**

mental diabetes on aminopyrine metabolism in rats. Xenobiotica 17: 107

1083, 1987.

TOMLNSON, K. C., GARDINER, S. M., HEBDEN, R. A., AND BENNETT,
- DDA, A., SHIMENO, H., NAGAMATSU, A., AND SHIGEMATSU, H.: Effects of experimental diabetes on aminopyrine metabolism in rats. Xenobiotica 17: 1075-1083, 1987.
MLINSON, K. C., GARDINER, S. M., HEBDEN, R. A., AND BENNETT, T.: 1083, 1987.
 TOMLINSON, K. C., GARDINER, S. M., HEBDEN, R. A., AND BENNETT, T.: Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol. Rev. tional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol. Rev. 44: 103-150, 1992.
TUNO, M. J., GONZALEZ, P., GARCIA-PARDO, L. A., AND GONZALEZ, J.:
-
- TURLEY, S. D., AND DIETSCHY, J. M.: The metabolism and excretion of choles-
terol by the liver. In The Liver: Biology and Pathobiology, ed. by I. M. Arias,
W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shafritz, 2nd Ed. THOM, M. J., GONZALEZ, P., GARCIA-PARDO, L. A., AND GONZALEZ, J.: Hepatic transport of bilirubin in rats with streptozotocin-induced diabetes. J. Hepatol. 13: 71–77, 1991.

IRLEY, S. D., AND DIETSCHY, J. M.: The metabolism tol. 13: 71-77, 1991.
TURLEY, S. D., AND DIETSCHY, J. M.: The metabolism and excretion of choles-
terol by the liver. In The Liver: Biology and Pathobiology, ed. by I. M. Arias,
W. B. Jakoby, H. Popper, D. Schachter, and D terol by the liver. In The Liver: Biology and Pathobiology, W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shaf 617–642, Raven Press, New York, 1988.
WISS, J. R., AND CARTER, R. F.: The relation of biliary types, J. R.,
-
- W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shafritz, 2nd Ed., pp.
617–642, Raven Press, New York, 1988.
Twiss, J. R., AND CARTER, R. F.: The relation of biliary tract disorders to
diabetes mellitus. Am. J. Med. Sci. VISS, J. R., AND CARTER, R. F.:
diabetes mellitus. Am. J. Med. SHIDA, K., TAKEUCHI, N. S. FOLOWAN
TAKEUCHI, N.: Altered bile acid r
Pharmacol. 29: 553-562, 1979.
EDA, H., SAKURAI, T., OTA, M., N. diabetes mellitus. Am. J. Med. Sci. 224: 263–273, 1952.
UCHIDA, K., TAKASE, H., KADOWAKI, M., NUMUVA, Y., MATSUBARA, T., AND
TAKEUCHI, N.: Altered bile acid metabolism in alloxan diabetic rats. Jpn. J.
Dispaparance 1. Sec.
- TAKEUCHI, N.: Altered bile acid metabolism in alloxan diabetic rats. Jpn. J.
Pharmacol. 29: 553-562, 1979.
UEDA, H., SAKURAI, T., OTA, M., NAKAJIMA, A., KAMII, K., AND MAEZAWA, H.:
Disappearance rate of tolbutamide in norm Disappearance rate of tolbutamide in normal subjects and in diabetes melitus, liver cirrhosis and renal disease. Diabetes 12: 414-419, 1963.
VACEK, L., KLABUSAY, L., AND DRAPELOVA, L.: Biochemistry and morphology of experi
-
- litus, liver cirrhosis and renal disease. Diabetes 12: 414-419, 1963.
ICEK, L., KLABUSAY, L., AND DRAPELOVA, L.: Biochemistry and morphology of
experimental diabetes in the rat. Scr. Med. (Brno) 63: 195-200, 1990.
NO DYKE, experimental diabetes in the rat. Scr. Med. (Brno) 63: 195-200, 1990.
VAN DYKE, R. W., STEPHENS, J. E., AND SCHARSCHMIDT, B. F.: Effect of ion
substitution on bile acid-dependent and bile acid-independent bile formation
by VAN DYKE, R. W., STEPHENS, J. E., AND SCHARSCHMIDT, B. F.: Effect of ion
substitution on bile acid-dependent and bile acid-independent bile formation
by the isolated perfused rat liver. J. Clin. Invest. 70: 505-517, 1982.
 R aubstitution on bile acid-dependent and bile acid-independent bile formation
-

REV

ARMACOLOGI

spet

 \mathbb{O}

spet

in liver microsomal fatty acid composition and glucose-6-phosphatase activation in the same fitty in rats. Lipids 26: 441–444, 1991.

- **DIABETES MELLITUS AND H**
in liver microsomal fatty acid composition and glucose-6-phosphatase activ-
ity in rats. Lipid abnormalities in diabetes mellitus. Rev. Med. Interne 12:
277-280, 1991.
- in liver microsomal fatty acid composition and glucose-6-phosphatase activity in rats. Lipids 26: 441-444, 1991.
VERGES, B.: Lipid abnormalities in diabetes mellitus. Rev. Med. Interne 12:
277-280, 1991.
VILLANUEVA, G. R., ity in rats. Lipids 26: 441–444, 1991.
RGES, B.: Lipid abnormalities in diabetes mellitus. Rev. Med. Interne 12:
277–280, 1991.
LIANUEVA, G. R., HERREROS, M., PEREZ-BARRIOCANAL, F., BOLANOS, J. P.,
BRAVO, P., AND MARIN, J. 277-280, 1991.

VILLANUEVA, G. R., HERREROS, M., PEREZ-BARRIOCANAL, F., BOLANOS, J. P., BRAVO, P., AND MARIN, J. J.: G.: Enhancement of bile acid-induced biliary

lipid secretion by streptozotocinin rats. Role of insulin-d
- lipid secretion by streptozotocin in rats. Role of insulin-deficient state.
LaM. Clin. Med. 115: 441–448, 1990a.
LLANUEVA, G. R., HERREROS, M., PEREZ-BARRIOCANAL, F., FERNANDEZ, I
AND MARIN, J. J.: Effect of acute insulin Leb. Clin. Med. 115: 441–448, 1990a.

VILLANUEVA, G. R., HERREROS, M., PEREZ-BARRIOCANAL, F., FERNANDEZ, E.,

AND MARIN, J. J.: Effect of acute insulin administration on biliary lipid

secretion by the diabetic rat. J. Exp LLANUEVA, G. R., HERREROS, M., PEREZ-BARRIOCANAL, F., FERNANDEZ, E., AND MARIN, J. J.: Effect of acute insulin administration on biliary lipid secretion by the diabetic rat. J. Exper. Pathol. (Oxf.) 71: 89-94, 1990b.
NO DI
- **EXECUTE IN THE SECTED BY AN ABOVE SECTED BY A MARKER, P., AND LEVY, D.: Expression of the bile acid transport protein bred during liver development and in hepatoma cells. J. Biol. Chem. 265: 5942. For a set of the bile sc**
- BELLWARD, G. D.: D.: Expression of the bile acid transport protein during liver development and in hepatoma cells. J. Biol. Chem. 265: 5942-10
6945, 1990.
BERLWARD, G. D.: Differential effects of diabetes on microsomal met of various substrates: Comparison of streptozon, M., GONTOVNICK, L., SUNAHARA, G., AND

SELLWARD, G. D.: Differential effects of diabetes on microsomal metabolism

of various substrates: comparison of streptozotocin and sp
- BELLWARD, G. D.: Differential effects of diabetes on microsomal metabolism
of various substrates: comparison of streptozotocin and spontaneously dia-
betic Wistar rats. Biochem. Pharmacol. 32: 327–335, 1983.
membrane prote betic Wistar rats. Biochem. Pharmacol. 32: 327-335, 1983.
WATALA, C., AND WINOCOUR, P. D.: The relationship of chemical modification of
membrane proteins and lipoproteins to reduced membrane fluidity of eryth-
rocytes fro membrane proteins and lipoproteins to reduced membrane fluidity of encytes from diabetic subjects. Eur. J. Clin. Chem. Clin. Biochem. 30: 519, 1992.
ATKINS, J. B. II. I., BAUMAN, M. E., AND BEATY, T. M.: Effect of soorthov
- rocytes from diabetic subjects. Eur. J. Clin. Chem. Clin. Biochem. 30: 5
619, 1992.
ATKINS, J. B. II. I., BAUMAN, M. E., AND BEATY, T. M.: Effect of sod
orthovanadate on the hepatobiliary clearance of rose bengal in strept 519, 1992.

WATKINS, J. B. II. I., BAUMAN, M. E., AND BEATY, T. M.: Effect of sodium

orthovanadate on the hepatobiliary clearance of rose bengal in streptozoto-

cin-induced diabetes rate. Biochem. Pharmacol. 46: 2269-227
- cin-induced diabetic rats. Biochem. Pharmacol. 46: 2269–2276, 1993.
WATKINS, J. B. III, AND DYKSTRA, T. P.: Alterations in biliary excretory function by streptozotocin-induced diabetes. Drug Metab. Dispos. 15: 177–183, 198
- ATKINS, J. B. III, AND DYKSTRA, T. P.: Alterations in biliary excretory function by streptozotocin-induced diabetes. Drug Metab. Dispos. 15: 177–183, 1987.
ATKINS, J. B. III, AND KLAASSEN, C. D.: Effect of repeated oral ad tion by streptozotocin-induced diabetes. Drug Metab. Dispos. 15: 177-183,
1987.
WATKINS, J. B. III, AND KLAASSEN, C. D.: Effect of repeated oral administration
of taurocholate on hepatic excretory function in the rat. J. P ATKINS, J. B. III, AND KLAASSEN, C. D.: Effect of repeated oral administration
of taurocholate on hepatic excretory function in the rat. J. Pharmacol. Exp.
Ther. 218: 182–187, 1981.
ATKINS, J. B. II. I., AND KLUEBER, K. M.
- Ther. 218: 182-187, 1981.

WATKINS, J. B. II. I., AND KLUEBER, K. M.: Hepatic phase II biotransformation

in C57Bl/KsJ db/db mice: Comparison to that in Swiss Webster and 129

REJ mice. Comp. Biochem. Physiol. 90C: 417-421
- ATKINS, J. B. II. I., AND KLUEBER, K. M.: Hepatic phase II biotransformation C57Bl/KsJ db/db mice: Comparison to that in Swiss Webster and 1 REJ mice. Comp. Biochem. Physiol. 90C: 417-421, 1988.
ATKINS, J. B. III, AND MANGE REJ mice. Comp. Biochem. Physiol. 90C: 417-421, 1988.
WATKINS, J. B. III, AND MANGELS, L. A.: Hepatic biotransformation in lean and
obsee Wistar Kyoto rats: comparison to that in streptozocin-pretreated
Sprague-Dawley rats ATKINS, J. B. III, AND MANGELS, L. A.: Hepatic biotrane
obese Wistar Kyoto rats: comparison to that in stre
Sprague-Dawley rats. Comp. Biochem. Physiol. 88C:
ATKINS, J. B. III, AND NODA, H.: Biliary excretion of org.
rats.
-
- WATKINS, J. B. III, AND MANGELS, L. A.: Hepatic biotransformation in lean and
obese Wistar Kyoto rats: comparison to that in streptozotocin-pretreated
Sprague-Dawley rats. Comp. Biochem. Physiol. 88C: 159-164, 1987.
WATKIN ATKINS, J. B. III, AND NODA, H.: Biliary excretion of organic anions in diabet
rats. J. Pharmacol. Exp. Ther. 239: 467-473, 1986.
ATKINS, J. B. III, SANDERS, R. A.: The effects of diabetes on hepatobilia
function. In Bilia macology, Vol. 8(4), pp. 475-496, Fischer Verlag, Stuttgart, 1991.

WATKINS, J. B. III, SANDERS, R. A.: The effects of diabetes on hepatobiliary

function. In Biliary Excretion of Drugs and Other Chemicals, ed. by C. P.

S function. *In* Biliary Excretion of Drugs and Other Chemicals, ed. by C. P.
Siegers and J. B. Watkins III, Progress in Pharmacology and Clinical Pharmacology, vol. 8(4), pp. 475–496, Fischer Verlag, Stuttgart, 1991.
ATKINS
- Siegers and J. B. Watkins III, Progress in Pharmacology and Clinical Pharmacology, vol. 8(4), pp. 475–496, Fischer Verlag, Stuttgart, 1991.
WATKINS, J. B. III, SANDEXE, R. A., APD BECK, L. V.: The effect of long-term strep streptozotocin-induced diabetes on the hepatotoxicity of bromobenzene and carbon tetrachloride and hepatic biotransformation in rats. Toxicol. Appl
Pharmacol. 93: 329-338, 1988.
ATKINS, J. B. III, AND SHERMAN, S. E.: Long-
-
- Exp. Ther. 260: 1337-1343, 1992.
WATKINS, J. B. III, AND SMITH, H. M.: Streptozotocin-induced diabetes
creases γ glutamyltranspeptidase expression in rats. Toxicologist 13:
1993.
WAXMAN, D. J., MORRISSEY, J. J., AND LEBL
- ATKINS, J. B. III, AND SMITH, H. M.: Streptozotocin-induced diabetes increases γ -glutamyltranspeptidase expression in rats. Toxicologist 13: 32, 1993.
AXMAN, D. J., MORRISSEY, J. J., AND LEBLANC, G. A.: Female-predomina creases γ glutamyltranspeptidase expression in rats. Toxicologist 13: 32, 1993.
WAXMAN, D. J., MORRISSEY, J. J., AND LEBLANC, G. A.: Female-predominant rat hepatic P-450 forms j (IIE1) and 3 (IIA1) are under hormonal reg rat hepatic P-450 forms j (IIE1) and 3 (IIA1) are under hormonal regulatory
controls distinct from those of the sex-specific P-450 forms. Endocrinology
124: 2954-2966, 1989.
ENRTRAUB, W. H., AND MACKEN, T. E.: pH-Regulatio
- **WEINTRAUB, W. H., AND MACKEN, T. E.:** pH-Regulation in hepatoma cells: roles
for Na-H exchange, Cl-HCO₃ exchange, and Na-HCO₃ cotransport. Am. J.
Physiol. **2857:** G317-G327, 1989.
WEY, H. E., YUNKER, R. L., HARRIS, P.
- for Na-H exchange, Cl-HCO₃ exchange, and Na-HCO₃ cotransport. Am. J.
Physiol. 257: G317-G327, 1989.
EV, H. E., YUNKER, R. L., HARRIS, P., AND SUBBIAH, M. T. R.: Effect of
streptozotocin-induced diabetes in neonatal rat Physiol. 287: G317-G327, 1989.
WEY, H. E., YUNKER, R. L., HARRIS, P., AND SUBBIAH, M. T. R.: Effect of streptozotocin-induced diabetes in neonatal rat on bile acid pool changes in adult life: selective sensitivity in femal
- WEY, H. E., YUNKER, R. L., HARRIS, P., AND SUBBIAH, M. T. R.: Effect of streptozotocin-induced diabetes in neonatal rat on bile acid pool changes in adult life: selective sensitivity in females. Biochem. Med. 31: 167-173,
- Mutations in exon 3 of the lipoprotein lipses gene segretating in a family
with hypertriglyceridemia, pancreatitis, and non-insulin-dependent diabe-
tes. J. Clin. Invest. 92: 203-211, 1993.
WINKLER, R., AND MOSER, M.: Alte EXTRIER, R., AND MOSER, M.: Alterations of antioxidant tissue defense en-
zymes and related metabolic parameters in streptozotocin-diabetic rats:
effects of iodine treatment. Wiener Klin. Wochenschr. 104: 409–413, 1992.
IN
-

DIABETES MELLITUS AND HEPATOBILIARY FUNCTION 23
and glucose-6-phosphatase activ-concentration) affect lipid and lipoprotein levels in insulin-dependent dia-
mellitus. Rev. Med. Interne 12: WINOCOUR, P. H., DURRINGTON, P. N

- EPATOBILIARY FUNCTION

concentration) affect lipid and lipoprotein levels in insulin-dependent dia-

betes mellitus? Clin. Sci. (Lond.) 77: 369–374, 1989.

WINOCOUR, P. H., DURRINGTON, P. N., BHATNAGAR, D., ISHOLA, M., ARR concentration) affect lipid and lipoprotein levels in insulin-dependent diabetes mellitus? Clin. Sci. (Lond.) 77: 369–374, 1989.
INOCOUR, P. H., DURRINGTON, P. N., BHATNAGAR, D., ISHOLA, M., ARROL, S., AND MACKNESS, M.: Ab WINOCOUR, P. H., DURRINGTON, P. N., BHATNAGAR, D., ISHOLA, M., ARROL, S., AND MACKNESS, M.: Abnormalities of VLDL, IDL, and LDL characterize insulin-dependent diabetes mellitus. Arterioscler. Thrombosis 12: 920–928, 1992.

- AND MACKNESS, M.: Abnormalities of VLDL, IDL, and LDL characteriz
insulin-dependent diabetes mellitus. Arterioscler. Thrombosis 12: 920–928
1992.
ISHER, M. H., AND EVANS, W. H.: Functional polarity of the rat hepatocyt
sur insulin-dependent diabetes mellitus. Arterioscler. Thrombosis 12: 920–928,
1992.
WISHER, M. H., AND EVANS, W. H.: Functional polarity of the rat hepatocyte
surface membrane. Isolation and characterization of plasma-membran 1992.
WISHER, M. H., AND EVANS, W. H.: Functional polarity of the rat hepatocy
surface membrane. Isolation and characterization of plasma-membra
subfractions from the blood-sinusoidal, bile canalicular and contiguous surfa surface membrane. Isolation and characterization of plasma-membrane subfractions from the blood-sinusoidal, bile canalicular and contiguous surfaces of the hepatocyte. Biochem. J. 146: 375-388, 1975.
ISNIEWSKI, K.: Effect
- faces of the hepatocyte. Biochem. J. 146: 375-388, 1975.
WISNIEWSKI, K.: Effect of insulin on the INH transport across the cell membranes in the perfused liver and isolated hemidiaphragm of rats. Biochem.
Pharmacol. 17: 21 characterization of an organic and isolated hemidiaphragm of rate. Biochem.
Pharmacol. 17: 2117–2124, 1968.
Pharmacol. 17: 2117–2124, 1968.
OLKOFF, A. W., AND CHUNG, C. T.: Identification, purification and partial
characte
- Pharmacol. 17: 2117-2124, 1968.
WOLKOFF, A. W., AND CHUNG, C. T.: Identification, purification and partial
characterization of an organic anion binding protein from rat liver cell
plasma membranes. J. Clin. Invest. 66: 115
- VILKOPF, A. W., AND CHUNG, C. T.: Identification, purification and partial
characterization of an organic anion binding protein from rat liver cell
plasma membranes. J. Clin. Invest. 65: 1152-1161, 1980.
WOLKOPF, A. W., SA D. M., AND SOSIAK, A.: Influence of Cl⁻ on organic anion transported by the acute of reduced by the acute of the patheon of rate in the solution of rate in the patheon and in the patheon and in the patheon and in the pat
-
- short-term cultured rat hepatocytes and isolated perfused rat liver. J. Clin.
Invest. 79: 1259-1268, 1987.
WONDERGEM, R.: Insulin depolarization of rat hepatocytes in primary mono-
layer culture. Am. J. Physiol. 244: C17-C WONDERGEM, R.: Insulin depolarization of rat hepatocytes in primary monollayer culture. Am. J. Physiol. 244: C17-C23, 1983.
WOODS, J. A., KNAUER, T. E., AND LAMB, R. G.: The acute effects of streptozotocin-induced diabetic
-
- incom. Biochem. Biochem. Biochem. Biochem. Biochem. Biochem. Biochem. Biochem. TAMAZOE, Y., MURAYAMA, N., SHIMADA, M., YAMAUCHI, K., AND KATO, R.:
Cytochrome P450 in livers of diabetic rats. Regulation by growth hormone
an Cytochrome P450 in livers of diabetic rats. Regulation by growth hormone
and insulin. Arch. Biochem. Biophys. 268: 567-575, 1989a.
YAMAZOR, Y., MURAYAMA, N., SHIMADA, M., IMAOKA, S., FUNAE, Y., AND KATO,
R.: Suppression of
- growth hormone-relationship between the increased level of P-450Dm-J
and depletion of growth hormone in diabetes. Mol. Pharmacol. 36: 716-722,
1989b.
YOSHINO, G., MATSUSHITA, M., IWAI, M., MORITA, M., MATSUBA, K., NATAGA, THE REPORT OF SUCHE IN REAL MATERIAL METABOLISM 41: 236-240, 1990.

YOSHINO, G., MATSUSHITA, M., IWAI, M., MORITA, M., MATSUBA, K., NATAGA, K., MAEDA, E., FURUKAWA, S., HIRANO, T., AND KAZUMI, T.: Effect of mild diabetes a MAEDA, E., FURUKAWA, S., HIRANO, T., AND KAZUMI, T.: Effect of mild
diabetes and dietary fructose on very-low-density lipoprotein triglyceride
turnover in rats. Metabolism 41: 236-240, 1990.
SHINO, G., MATSUSHITA, M., MAED
- triglyceride turnover in state. Metabolism 41: 236-240, 1990.

YOSHINO, G., MATSUBA, K., MAEDA, E., NAGATA, K., MORITA, M., MATSUBA, K., TANI, T., HORINNKI, R., KIMURA, Y., AND KAZUMI, T.: Effect of probucol on triglycerid
- K, TANI, T., HORINNEI, R., KIMURA, Y., AND KAZUMI, T.: Effect of probucol on triglyceride turnover in streptozotocin-diabetic rats. Atherosclerosis 88: 69–76, 1991.

SHINO, G., MATSUSHITA, M., MAEDA, E., NAKA, Y., NAGATA, 16, 1991.
 lipoproteins and triglyceride turnover in rats. Atherosclerosis deficiency and insulin treatment on the composition of triglyceride-rich

lipoproteins and triglyceride turnover in rats. Atherosclerosis **92:** 2 deficiency and insulin treatment on the composition of triglyceride-rich lipoproteins and triglyceride turnover in rats. Atherosclerosis **92:** 243–250, 1992.

1992.

1992.

1992.

1992.

1992.
 activities in rat liver: e
- Ipoproteins and triglyceride turnover in rats. Atherosclerosis 92: 243–250, 1992.
YOUNES, M., SCHLICHTING, R., AND SIEGERS, C.-P.: Glutathione S-transferase
activities in rat liver: effect of some factors influencing the m
- CALLICHTING, R., AND SIEGERS, C.-P.: Glutathione S-transferase

WATKINS, J. B. III, AND SHEAM, S. E.: Long-term diabetes alters the hepa

WATKINS, J. B. III, AND SHEAM, S. E.: Long-term diabetes alters the hepa

tobiliary V. PUNES, M., SCHLICHTING, R., AND SIEGERS, C.-P.: Glutathione S-transferase activities in rat liver: effect of some factors influencing the metabolism of zenobiotics. Pharmacol. Res. Commun. 12: 115–129, 1980.
UNG, N. L., YOUNG, N. L., SANDEK, C. D., WALTERS, L., LAPEYROLERIC, J., AND CHANG, V.:
V. Preventing hyperphagia normalizes 3-hydroxy-3-methylglutaryl-CoA reductase activity in small intestine and liver of diabetic rats. J. Lipid Res. V. Preventing hyperphagia normalizes 3-hydroxy-3-methylglutaryl-CoA reductase activity in small intestine and liver of diabetic rats. J. Lipid Res. 23:
831–838, 1982.
YOUNG, I. S., TORNEY, J. J., AND TRIMBLE, E. R.: The ef
	-
	-
	- HAVI, I., SHAFFER, E. A., AND GALL, D. G.: Total parenteral nutrition-
associated cholestasis—acute studies in infant and adult rabbits. J. Pediatr.
Gastroenterol. Nutr. 4: 622–627, 1985.
MMERI, B., VAD MERI, P. J.: Multis membrane version. J. J. Pharmacol. Exp. Ther. 250: 301-308, 1989.

	ZIMMERLI, B., VALANTINAS, J., AND MEIER, P. J.: Multispecificity of Na⁺-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma

	membr
	- dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma
membrane vesicles. J. Pharmacol. Exp. Ther. 250: 301–308, 1989.
ZIMMERMAN, B. R.: Influence of the degree of control of diabetes on the pre-
ventio monions. Hepatology **17:** 380 and the degree vention, postponement and amelioration 941–956, 1989.
anions. P., AND AWASTHI, Y. C.: ATP-dependence of the degree anions. Hepatology 17: 330–339, 1993.
ssgr, T., AND SOMMER, L. **ZYSTET, T., AND AWASTHI, Y.C.: ATP-dependent transport systems for organic anions. Hepatology 17: 330-339, 1993.**
 ZIMNIAK, P., AND AWASTHI, Y.C.: ATP-dependent transport systems for organic anions. Hepatology 17: 330-33
	- 941–956, 1989.
ZIMNIAK, P., AND AWASTHI, Y. C.: ATP-dependent transport systems for organic
anions. Hepatology 17: 330–339, 1993.
ZYSSET, T., AND SOMMER, L.: Diabetes alters drug metabolism—in vivo studies
in a streptozoto
	-
	- depend on hepatology 17: 330-339, 1993.
ZYSSET, T., AND SOMMER, L.: Diabetes alters drug metabolism—in vivo studing a streptozotocin-diabetic rat model. Experientia 42: 560-562, 1986.
ZYSSET, T., AND TLACH, C.: Aminopyrine
	- ments are the rat. J. Pharmacokinetics in the rat may depend on hepatic blood flow. Drug Metab. Dispos. 14: 625-626, 1986.
SSET, T., AND TLACH, C.: Aminopyrine pharmacokinetics in the rat may depend on hepatic blood flow.

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012